

Julia Genomics Package for Bioinformatics

18.337 Final Project Isha Jain December 11, 2013

Introduction | Central Dogma

Library Functions | Categories

Daily Use Toolbox

- Reverse
 Complement
- Translator

Intermediate Toolbox

- Primer Tm Calculator
- Restriction Enzyme
 Cutter
- Protein Atomic Composition

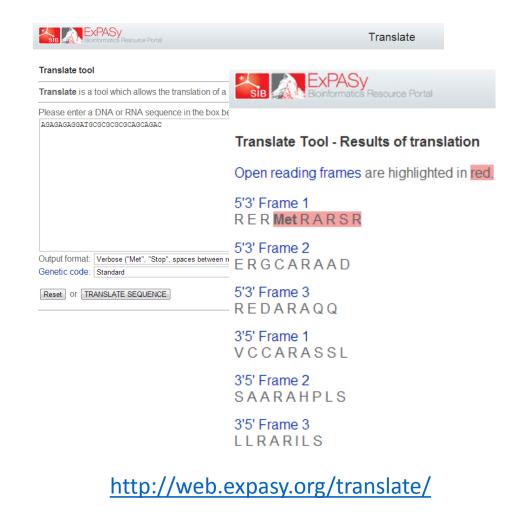
Advanced Toolbox

- Motif Finder
- Sequence Alignment
- Co-expression Analysis

Library Functions | Daily Use Functions

Reverse Complement converts a DNA sequence into its reverse, complement, or reverse-complement counterpart. You may want to work with the reverse-complement of a sequence if it contains an ORF on the reverse strand.

Paste the raw or FASTA sequence into the text area below.


>Sample sequence GGGGaaaaaaaatttatatat

SUBMIT CLEAR

Convert the DNA sequence into its reverse-complement counterpart.

[home]

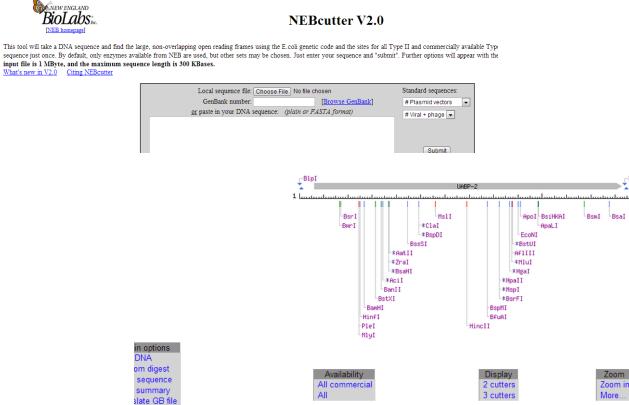
http://www.bioinformatics.org/sms/rev_comp.html

Library Functions | Intermediate Toolbox | Primer Tm

ļ	BioLabs [®]		VELCOME, GUEST Se MY ACCOUNT So MY NI ABOUT NEB C				
	APPLICATIONS PRODUCTS	TOOLS & RESOURCES	SUPPORT				
	Home > Tools & Resources > Interactive Tools > Tm Calcula	itor					
	📾 EMAIL 🧐 MY NEB 🖹 PRINT 🗎 PDF						
	Tm Calculator						
	This Tm Calculator is intended for use in estima reactions. Tm values are calculated using therm correction outlined in Owczarzy et al. (2004). For from Breslauer et al. (1986). This calculator is in reactions incorporating NEB polymerases.	odynamic data from Santa Lucia (Phusion DNA polymerases, the th	1998) and the salt ermodynamic data is				
	Input Product Group: Q5						
	Product: Q5 High-Fidelity DNA Polymerase						
	Primer Conc. (nM):						
	500 Primer 1 Sequence:						
	Primer 2 Sequence:						
	Results						

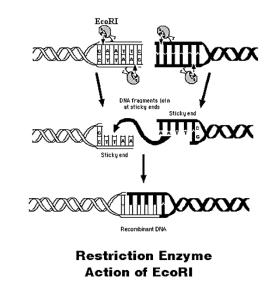
https://www.neb.com/tools-andresources/interactive-tools/tm-calculator

- In double-stranded DNA:
 - A binds to T
 - C binds to G
- In order to amplify a region of the genome, you design short strands of DNA that bind to the sequences surrounding your piece of interest
- For amplification to occur, the short strand of DNA must have certain properties of which melting temperature is most important
- The melting temperature of a piece of DNA can be calculated based on the different types of bonds predicted

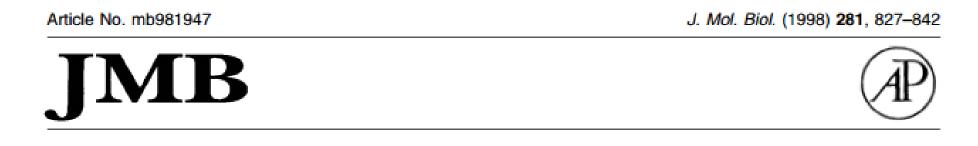

Library Functions |Intermediate Toolbox | Restriction Enzyme Cutter

BlpI

BsaI BspHI


More..

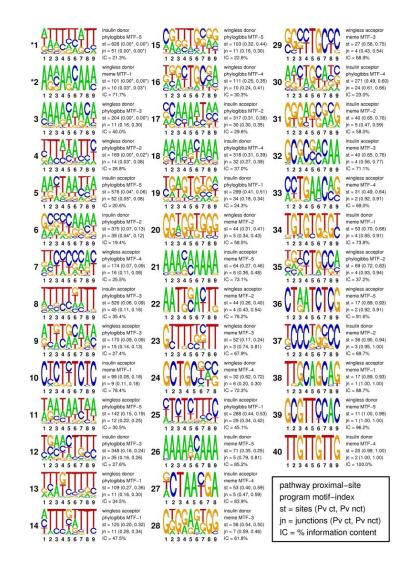
.1 1409



http://tools.neb.com/NEBcutter2/

project

- Restriction enzymes (RE) are proteins • that recognize specific sequences
- They cut the DNA with high specificity •
- RE are often repurposed for molecular ٠ biology experiments


Extracting Regulatory Sites from the Upstream Region of Yeast Genes by Computational Analysis of Oligonucleotide Frequencies

J. van Helden^{1*}, B. André² and J. Collado-Vides¹

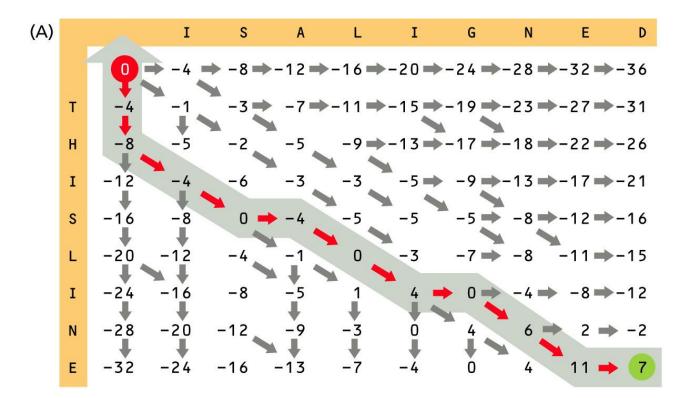
¹Centro de Investigación sobre Fijación de Nitrógeno Universidad Nacional Autónoma de México, AP565A Cuernamaca, 62100 Morelos We present here a simple and fast method allowing the isolation of DNA binding sites for transcription factors from families of coregulated genes, with results illustrated in *Saccharomyces cerevisiae*. Although conceptually simple, the algorithm proved efficient for extracting, from most of the weast regulatory families analyzed the upstream regulatory sequences

Library Functions |Advanced Toolbox | Motif Finder

- 1. Convert Genomic Sequence to Base 4 Representation
- 2. Determine distribution of all k-mers in intergenic, non-coding regions
- 3. Define subset of sequences that are thought to be functional
- 4. Determine distribution of k-mers in functional sequences
- 5. Use binomial to assign an enrichment score to each k-mer

Library Functions | Advanced Toolbox | Sequence Alignment

Sequence Alignment


		* .	:		*	: : :		
Q5E940 BOVIN	MPREDR	TWKSNYFLKI	I <mark>QLL</mark> DD <mark>YP</mark> KCH	FIV <mark>G</mark> ADNV <mark>GS</mark> KQN	4 <mark>0</mark> 0 IRMS LRGK-	AVV LMGKNTMMR	KAIRGHLENNP	ALE
RLA0 HUMAN	MPREDR	TW <mark>K</mark> SNYFLKI	E <mark>Q</mark> LLDD <mark>YP</mark> KCH	FIV <mark>G</mark> ADNV <mark>GS</mark> KQN	4 <mark>0</mark> 0 IRMS LRGK-	AVV LM <mark>GKNT</mark> MMB	KAIRGHLENNP	ALE
RLA0 MOUSE	MPREDR	TW <mark>K</mark> SNYFLKI	E <mark>Q</mark> LLDD <mark>YP</mark> KCH	FIV <mark>G</mark> ADNV <mark>GS</mark> KQN	4 <mark>0</mark> 0 IRMS LRGK-	AVV LM <mark>GKNT</mark> MMR	KAIRGHLENNP	ALE
RLAO RAT	MPREDR	TW <mark>K</mark> SNY <mark>F</mark> LKI	I <mark>Q</mark> LLDD <mark>YP</mark> KCH	FIV <mark>G</mark> ADNV <mark>GS</mark> KQN	4 <mark>0</mark> 0 IRMS LRGK-	AVV LM <mark>GKNT</mark> MMR	KAIRGHLENNP	ALE
RLA0 CHICK	MPREDR	TWKSNYFMKI:	E <mark>QLL</mark> DD <mark>YP</mark> KCE	7 V V <mark>G</mark> ADN V <mark>GS</mark> KQN	4 <mark>0</mark> 0 IRMS LRGK-	AVV LM <mark>GKNT</mark> MMR	KAIRGHLENNP	ALE
RLA0 RANSY	MPREDR	TW <mark>K</mark> SNYFLKI	I <mark>Q</mark> LLDD <mark>YP</mark> KCH	FIV <mark>G</mark> ADNV <mark>GS</mark> KQN	4 <mark>0</mark> 0 IRMS LRGK-	AVV LM <mark>GKNT</mark> MMR	KAIRGHLENNS	ALE
Q7ZUG3 BRARE	MPREDR	TW <mark>K</mark> SNYFLKI	E <mark>Q</mark> LLDD <mark>YP</mark> KCH	FIV <mark>G</mark> ADNV <mark>GS</mark> KQN	4 <mark>0</mark> T IRLS LRGK-	AVV LM <mark>GKNT</mark> MMR	KAIRGHLENNP	ALE
RLA0 ICTPU	MPREDR	TWKSNYFLKI	E <mark>QLLNDYP</mark> KCE	TIV <mark>G</mark> ADNV <mark>GS</mark> KQN	4 <mark>0</mark> T IRLS LRGK-	AIV LM <mark>GKNT</mark> MMR	KAIRGHLENNP	ALE
RLA0 DROME	MVRENK	AWKAQYFIKV	/ELFDEFPKCE	FIV <mark>G</mark> ADNV <mark>GS</mark> KQN	4 <mark>0</mark> n irts lrgl-	AVV LM <mark>GKNT</mark> MMR	KAIRGHLENNP	QLE
RLA0 DICDI	MSGAG-S	KRKKLFIEKA	REFTT TOKMI	UV AE A <mark>D</mark> F V <mark>GS</mark> SQI	QKIRKSIRGI-	GAV LMGKKTMIR	KVIRDLADSKP	ELD
Q54LP0 DICDI	MSGAG-S	KR <mark>K</mark> NVF <mark>I</mark> EK <mark>A</mark> T	[KLFTT <mark>Y</mark> DKM]	EV AE A <mark>D</mark> F V <mark>G S</mark> SQI	L <mark>Q</mark> KIRKSIRGI-	GAV LMGKKTMIR	KVIRDLADSKP	ELD
RLA0 PLAF8	MAKLSKQ	QK <mark>K</mark> QMY <mark>I</mark> EK <mark>L</mark> S	SS <mark>LI</mark> QQ <mark>Y</mark> SKII	LIVHV <mark>D</mark> NV <mark>GS</mark> NQN	ASVRKSLRGK-	ATILMGKNTRIR	TALKKNLQAVP	QIE
RLA0 SULAC	MIGLAVTTTKKIA	KWKVDEVAEL	F <mark>E</mark> KLKT <mark>H</mark> KT I]	IIAN I <mark>EG</mark> F <mark>P</mark> ADKI	HE IRKK LRGK-	ADIKVTKNNLFN	IALKNAGY	DTK
RLA0 SULTO	<mark>M</mark> RI <mark>M</mark> AVITQERK <mark>I</mark>	KW <mark>K</mark> IEEVKELI	E <mark>Q</mark> KLREYHT II	LIAN I <mark>EG</mark> FPADKI	HD IRKKMRGM-	AEIKVTKNTLFG	IAAKNAGI	DVS
RLA0 SULSO	<mark>M</mark> KR <mark>L</mark> ALALKQRK V F	SW <mark>K</mark> LEEVKEL	F <mark>el i</mark> knsnt II	LI <mark>G</mark> NL <mark>EG</mark> F <mark>P</mark> ADKI	LHE IRKK L <mark>RG</mark> K-	A <mark>TIKVTKNT</mark> LFK	IAAKNAGI	DIE
RLA0_AERPE	MSVVSLVGQMYKREKPI	EWKTLMLREL	E <mark>elf</mark> sk <mark>h</mark> rvvi	LFADLT <mark>GTPT</mark> FVV	/ <mark>Q</mark> RV <mark>R</mark> KKLWKK-	Y <mark>P</mark> MMVA <mark>K</mark> KRIII	RAMKAAGLEL	DDN
RLA0 PYRAE	-MMLAIGKRRYVRTRQY	ARKVKIVSEA	F <mark>e</mark> llQk <mark>yp</mark> yve	FLFDLH <mark>GLS</mark> SRII	HE YRYR LRRY-	GVIKIIKPTLFK	IAFTKVYGGI	PAE
RLA0 METAC	<mark>MA</mark> EERHHTEH <mark>I</mark>							ттр
RLA0_METMA	MAEERHHTEHI	Q <mark>wk</mark> kde ien i	K <mark>eliqsh</mark> kvf <mark>o</mark>	MVRIEGILATK	E <mark>Q</mark> K IRRD LKDV -	AVL <mark>KVSRNT</mark> LTE	RALNQLGE	SIP
RLA0_ARCFU								DYL
RLA0_METKA	MAVKAK <mark>G</mark> Q <mark>PP</mark> SGYE <mark>P</mark> KV <i>F</i>	E WKRRE VKE LI	K <mark>ELM</mark> DE <mark>Y</mark> ENV <mark>O</mark>	LVDL <mark>EGIPAPQ</mark> I	L <mark>Q</mark> E IRAK LRERE	TIIRMSENTLMB	IALEEKLDERP	ELE
RLA0_METTH							LALEKAGRELE	
RLA0_METTL	<mark>M</mark> ITAESEHK <mark>I</mark>	V <mark>bak</mark> iee <mark>a</mark> nk <mark>t</mark> i	K <mark>ELL</mark> KN <mark>G</mark> QI V A	AL V DMME V <mark>P</mark> AR <mark>Q</mark> I	L <mark>Q</mark> E IRDK IR-GI	M <mark>TL</mark> KMSRNTLIE	RAIKE VAE E T GNP	EFA
_	<mark>M</mark> IDAKSEHK <mark>I</mark>							
	METKVKAHV							
RLA0_PYRAB	MAHVF							
RLA0_PYRHO	MAHVF							
RLA0_PYRFU	MAHVF				-			
	MAHVF							
	<mark>MSA</mark> ESERKTET <mark>IE</mark>							GLE
	<mark>MSESEVRQTEV</mark> IE							GFE
	<mark>MSA</mark> EEQRTTEE <mark>VE</mark>							GLD
	MKE <mark>V</mark> 5							
	MRK IN							
	MTE <mark>P</mark>							
ruler	1	20	304	10	60		80	.90

Simplified Representation

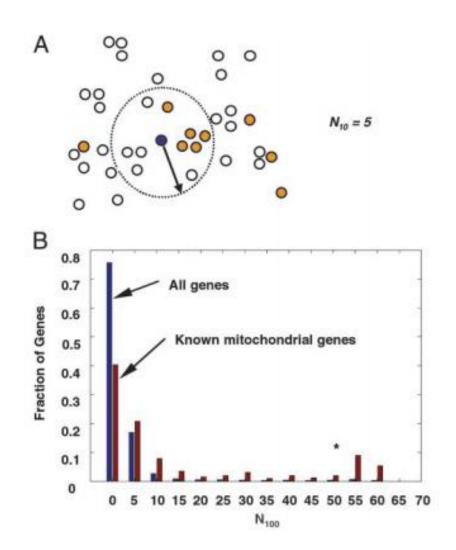
GAATTCAG	GAATTCAG
GGA-TC-G	GCAT-C-G
GAATTC-A	GAATTC-A
GGA-TCGA	GCAT-CGA

Library Functions | Advanced Toolbox | Sequence Alignment

Needleman-Wunsch Algorithm

- Assign a penalty to
 - Mismatches
 - Gaps
 - Different Start Sites
- Find optimal solution for each subsequence iteratively
- After completing scoring matrix, trace back path to find the most optimal alignment
- This algorithm can be modified to have context-dependent and mismatch-specific penalties

Library Functions | Advanced Toolbox | Co-expression Analysis


Identification of a gene causing human cytochrome c oxidase deficiency by integrative genomics

Vamsi K. Mootha*, Pierre Lepage[†], Kathleen Miller*, Jakob Bunkenborg[‡], Michael Reich*, Majbrit Hjerrild[‡], Terrye Delmonte*, Amelie Villeneuve[†], Robert Sladek[§], Fenghao Xu[¶], Grant A. Mitchell[∥], Charles Morin**, Matthias Mann[‡], Thomas J. Hudson[§], Brian Robinson[¶], John D. Rioux^{*††‡‡}, and Eric S. Lander^{*††‡‡§§}

*Whitehead Institute/Massachusetts Institute of Technology Center for Genome Research, Cambridge, MA 02139; [†]Genome Quebec Innovation Centre, McGill University, Montreal, QC, Canada H3G 1A4; [†]MDS Proteomics, 5230 Odense, Denmark; [§]Montreal Genome Centre, McGill University Health Centre, Montreal, QC, Canada H3G 1A4; [†]Hospital for Sick Children, Toronto, ON, Canada M5G 1X8; [§]Service de Génétique Médicale, Hôpital Sainte-Justine, Montreal, QC, Canada H3T 1C5; **Department of Pediatrics and Clinical Research Unit, Chicoutimi, QC, Canada G7H 4A3; and ^{§§}Department of Biology, Massachusetts Institute of Technology, Cambridge MA 02138

- 1. Input and format microarray data for 15+ experimental conditions.
- 2. For each gene or probeset, find the other genes/probesets that correlate well -> rank top hits.
- 3. Compare to gene list of interest.
- 4. Genes that have the largest number of neighbors that are contained within the gene list of interest are likely functionally related to the genes in the comparison list.

Ex. Application: proteome determination

