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Loop Closure

* Fundamental problem in navigation — computation/storage

Paul Newman, Research in Mobile Robotics. Oxford Mobile Robotics Research Group. 2005. http://www.soue.org.uk/souenews/issue4/mobilerobots.html
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Loop Closure

* Fundamental problem in navigation — computation/storage

* Place recognition for a previously visited location
* Simultaneous Localization and Mapping (SLAM)

* Place recognition for an external database

Paul Newman, Research in Mobile Robotics. Oxford Mobile Robotics Research Group. 2005. http://www.soue.org.uk/souenews/issue4/mobilerobots.html
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Loop Closure Technique

* 1. Extract image features




Loop Closure Technique

* 1. Extract image features

* 2. Generate a scene descriptor l
* Based on vocabulary of features
* Can be extremely sparse z =(wy,0,..,0,w,, 0...0,....)




Loop Closure Technique

* 1. Extract image features

* 2. Generate a scene descriptor
* Based on vocabulary of features
e Can be extremely sparse

* 3. Find images with high similarity

z=(w,0,...,0,w,, 0...0,....)

!

dot(z,, z,) > threshold




Loop Closure with Scene
Seguences

* Use sequences of scenes rather than individual scenes
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* Use sequences of scenes rather than individual scenes
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Loop Closure with Scene
Seguences

* Use sequences of scenes rather than individual scenes
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* Find local sequences (off-diagonal traces) ?_- o HEEE

* Modified Smith-Waterman algorithm
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Loop Closure with Scene
Seguences

* Use sequences of scenes rather than individual scenes
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* Find local sequences (off-diagonal traces) ?_- o HECEEL
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Dominant Features

K. L. Ho and P. Newman, "Detecting loop closure with scene sequences," International Journal of Computer Vision, vol. 74, pp. 261-286, 2007.




Dominant Features

* To remove dominant features - rank reduction
* Using singular value decomposition:

S':Zuiﬂ,lviT r*=argmax H(M,r)
HL =2 3 ol loglolhr)  A0T)=
T logm R 32,

K. L. Ho and P. Newman, "Detecting loop closure with scene sequences," International Journal of Computer Vision, vol. 74, pp. 261-286, 2007.




Reduction

100

2002 ;
4 :
300 3
-
400
500-{"

r

= wirs

—100

—400

—500

00

00

—900

13000

milarity matrix

100

200 300

After

400 500 600 700 800

rank reducing

900

1000




Smith-Waterman
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Towards Real-time

* SVD: huge bottleneck
* 60% of the step-by-step run-time
 Scales poorly as scene size increases

* Replace with SVDS
* Calculates k most significant singular values/vectors
* Better performance for large, sparse matrices
 Singular value tolerance can be specified




SVDS and Julia

Execution Times for k=5
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* Available SVDS |
* ARPACK — manipulating eigs .|

propack (k=5)
arpack (k=5)
svdlibc (k=5)
lapack (full)

on Hermitian matrix ATA
* PROPACK — using
Golub-Kahan-Lanczos
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* Julia SVDS in the works: N
* Currently at basic GKL bidiagonalization

* Part of a larger IterativeSolvers package effort
Provide Julia implementation of ARPACK methods




Golub-Kahan-Lanczos

Decompose A iteratively into:
A=PBQ’

Yielding a bidiagonal B:

B-n. —

Perform SVD of B:

A is now decomposed as:

A=PXIQY =UxV"




Problems with GKL

* Loss of orthogonality of left Lanczos vectors (P) and of right
right Lanczos vectors (Q) through iterations

* Solutions

* Full orthoginalization

High computational cost

Cost grows as the iterative method proceeds
 Partial orthoginalization

Perform corrections when orthogonality drops below a threshold
* Restarting

Restarts the computation after a fixed number of iterations to limit
the number of Lanczos steps (and size of P and Q)




Performance

* Calculating 10 most significant singular values of matrices with
sparsity between .01 and .1

* Comparison of different modifications to GKL
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Summary

* Reimplemented versions of Golub-Kahan-Lanczos
bidiagonalization for calculation of the partial SVD

* Orthogonalization methods
* Restarting

* To be done:
* Cleaned up and optimized
* Further tested against existing implementations
* Comparison of restart methods (implicit versus thick)




