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Loop Closure 

• Fundamental problem in navigation – computation/storage 
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Loop Closure 

• Fundamental problem in navigation – computation/storage 

 

 

 

 

 

 

• Place recognition for a previously visited location 

• Simultaneous Localization and Mapping (SLAM) 

 

• Place recognition for an external database 

Paul Newman, Research in Mobile Robotics. Oxford Mobile Robotics Research Group. 2005. http://www.soue.org.uk/souenews/issue4/mobilerobots.html 

http://www.soue.org.uk/souenews/issue4/mobilerobots.html


Loop Closure Technique 

• 1. Extract image features 
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• 2. Generate a scene descriptor 

• Based on vocabulary of features 

• Can be extremely sparse 

 

z = (w1,0,…,0,w2, 0…0,….) 



Loop Closure Technique 

• 1. Extract image features 

 

 

 

• 2. Generate a scene descriptor 

• Based on vocabulary of features 

• Can be extremely sparse 

 

• 3. Find images with high similarity 

z = (w1,0,…,0,w2, 0…0,….) 

dot(z1, z2) > threshold 



Loop Closure with Scene 
Sequences 
• Use sequences of scenes rather than individual scenes 

 



Loop Closure with Scene 
Sequences 
• Use sequences of scenes rather than individual scenes 

 

• Compute a similarity matrix 

 

 

 

 

Find local sequences (off-diagonal traces) 
Modified Smith-Waterman algorithm 

 

Problem: rectangular pattern due to 
dominant features (common mode  
similarity) 
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Loop Closure with Scene 
Sequences 
• Use sequences of scenes rather than individual scenes 

 

• Compute a similarity matrix 

 

 

 

 

• Find local sequences (off-diagonal traces) 
• Modified Smith-Waterman algorithm 

 

Problem: rectangular pattern due to 
dominant features (common mode  
similarity) 
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Loop Closure with Scene 
Sequences 
• Use sequences of scenes rather than individual scenes 

 

• Compute a similarity matrix 

 

 

 

 

• Find local sequences (off-diagonal traces) 
• Modified Smith-Waterman algorithm 

 

• Problem: rectangular pattern due to 
dominant features (common mode  
similarity) – false positives 
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Dominant Features 

 

 

 

 

 

 

 

 

 

K. L. Ho and P. Newman, "Detecting loop closure with scene sequences," International  Journal of Computer Vision, vol. 74, pp. 261-286, 2007.  



Dominant Features 

 

 

 

 

• To remove dominant features → rank reduction 

• Using singular value decomposition: 
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K. L. Ho and P. Newman, "Detecting loop closure with scene sequences," International  Journal of Computer Vision, vol. 74, pp. 261-286, 2007.  



Reduction 
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Smith-Waterman 
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Towards Real-time 

• SVD: huge bottleneck 

• 60% of the step-by-step run-time 

• Scales poorly as scene size increases 

 

 

• Replace with SVDS 

• Calculates k most significant singular values/vectors 

• Better performance for large, sparse matrices 

• Singular value tolerance can be specified 



SVDS and Julia 

• Available SVDS 

• ARPACK – manipulating eigs 

    on Hermitian matrix ATA 

• PROPACK – using 

    Golub-Kahan-Lanczos 

   (GKL) with implicit restarting 

 

• Julia SVDS in the works:  

• Currently at basic GKL bidiagonalization 

• Part of a larger IterativeSolvers package effort 

• Provide Julia implementation of ARPACK methods 

 

 

 



Golub-Kahan-Lanczos 

*A PBQ

*B X Y 

* * *A PX Q Y U V   

• Decompose A iteratively into: 
 

 

• Yielding a bidiagonal B: 

 

 

 

 

• Perform SVD of B: 

 

• A is now decomposed as: 



Problems with GKL 

• Loss of orthogonality of left Lanczos vectors (P) and of right 
right Lanczos vectors (Q) through iterations 

 

• Solutions 

• Full orthoginalization 

• High computational cost 

• Cost grows as the iterative method proceeds 

• Partial orthoginalization 

• Perform corrections when orthogonality drops below a threshold 

• Restarting 

• Restarts the computation after a fixed number of iterations to limit 
the number of Lanczos steps (and size of P and Q) 

 



Performance 

• Calculating 10 most significant singular values of matrices with 
sparsity between .01 and .1 

• Comparison of different modifications to GKL 



Summary 

• Reimplemented versions of Golub-Kahan-Lanczos 
bidiagonalization for calculation of the partial SVD 

• Orthogonalization methods 

• Restarting 

 

• To be done: 

• Cleaned up and optimized 

• Further tested against existing implementations 

• Comparison of restart methods (implicit versus thick) 


