
Julia SVDS for Loop Closure
Timmy Galvin

Loop Closure

Loop Closure

• Fundamental problem in navigation – computation/storage

Paul Newman, Research in Mobile Robotics. Oxford Mobile Robotics Research Group. 2005. http://www.soue.org.uk/souenews/issue4/mobilerobots.html

http://www.soue.org.uk/souenews/issue4/mobilerobots.html

Loop Closure

• Fundamental problem in navigation – computation/storage

• Place recognition for a previously visited location

• Simultaneous Localization and Mapping (SLAM)

• Place recognition for an external database

Paul Newman, Research in Mobile Robotics. Oxford Mobile Robotics Research Group. 2005. http://www.soue.org.uk/souenews/issue4/mobilerobots.html

http://www.soue.org.uk/souenews/issue4/mobilerobots.html

Loop Closure Technique

• 1. Extract image features

Loop Closure Technique

• 1. Extract image features

• 2. Generate a scene descriptor

• Based on vocabulary of features

• Can be extremely sparse

z = (w1,0,…,0,w2, 0…0,….)

Loop Closure Technique

• 1. Extract image features

• 2. Generate a scene descriptor

• Based on vocabulary of features

• Can be extremely sparse

• 3. Find images with high similarity

z = (w1,0,…,0,w2, 0…0,….)

dot(z1, z2) > threshold

Loop Closure with Scene
Sequences
• Use sequences of scenes rather than individual scenes

Loop Closure with Scene
Sequences
• Use sequences of scenes rather than individual scenes

• Compute a similarity matrix

Find local sequences (off-diagonal traces)
Modified Smith-Waterman algorithm

Problem: rectangular pattern due to
dominant features (common mode
similarity)

100 200 300 400 500 600 700 800 900 1000

100

200

300

400

500

600

700

800

900

1000

Loop Closure with Scene
Sequences
• Use sequences of scenes rather than individual scenes

• Compute a similarity matrix

• Find local sequences (off-diagonal traces)
• Modified Smith-Waterman algorithm

Problem: rectangular pattern due to
dominant features (common mode
similarity)

100 200 300 400 500 600 700 800 900 1000

100

200

300

400

500

600

700

800

900

1000

Loop Closure with Scene
Sequences
• Use sequences of scenes rather than individual scenes

• Compute a similarity matrix

• Find local sequences (off-diagonal traces)
• Modified Smith-Waterman algorithm

• Problem: rectangular pattern due to
dominant features (common mode
similarity) – false positives

100 200 300 400 500 600 700 800 900 1000

100

200

300

400

500

600

700

800

900

1000

Dominant Features

K. L. Ho and P. Newman, "Detecting loop closure with scene sequences," International Journal of Computer Vision, vol. 74, pp. 261-286, 2007.

Dominant Features

• To remove dominant features → rank reduction

• Using singular value decomposition:

*

'
n

T

i i i

i r

S u v


  rMHr
r

,maxarg*

 
    






n

rk

rkrk
n

rMH ,log,
log

1
),(  





n

rk

k

iri




 ,

K. L. Ho and P. Newman, "Detecting loop closure with scene sequences," International Journal of Computer Vision, vol. 74, pp. 261-286, 2007.

Reduction

100 200 300 400 500 600 700 800 900 1000

100

200

300

400

500

600

700

800

900

1000

100 200 300 400 500 600 700 800 900 1000

100

200

300

400

500

600

700

800

900

1000

After rank reducing Similarity matrix

Smith-Waterman

100 200 300 400 500 600 700 800 900 1000

100

200

300

400

500

600

700

800

900

1000

100 200 300 400 500 600 700 800 900 1000

100

200

300

400

500

600

700

800

900

1000

After Smith-Waterman After rank reducing

Towards Real-time

• SVD: huge bottleneck

• 60% of the step-by-step run-time

• Scales poorly as scene size increases

• Replace with SVDS

• Calculates k most significant singular values/vectors

• Better performance for large, sparse matrices

• Singular value tolerance can be specified

SVDS and Julia

• Available SVDS

• ARPACK – manipulating eigs

 on Hermitian matrix ATA

• PROPACK – using

 Golub-Kahan-Lanczos

 (GKL) with implicit restarting

• Julia SVDS in the works:

• Currently at basic GKL bidiagonalization

• Part of a larger IterativeSolvers package effort

• Provide Julia implementation of ARPACK methods

Golub-Kahan-Lanczos

*A PBQ

*B X Y 

* * *A PX Q Y U V   

• Decompose A iteratively into:

• Yielding a bidiagonal B:

• Perform SVD of B:

• A is now decomposed as:

Problems with GKL

• Loss of orthogonality of left Lanczos vectors (P) and of right
right Lanczos vectors (Q) through iterations

• Solutions

• Full orthoginalization

• High computational cost

• Cost grows as the iterative method proceeds

• Partial orthoginalization

• Perform corrections when orthogonality drops below a threshold

• Restarting

• Restarts the computation after a fixed number of iterations to limit
the number of Lanczos steps (and size of P and Q)

Performance

• Calculating 10 most significant singular values of matrices with
sparsity between .01 and .1

• Comparison of different modifications to GKL

Summary

• Reimplemented versions of Golub-Kahan-Lanczos
bidiagonalization for calculation of the partial SVD

• Orthogonalization methods

• Restarting

• To be done:

• Cleaned up and optimized

• Further tested against existing implementations

• Comparison of restart methods (implicit versus thick)

