
Using Julia for Place Recognition
6.338 – Parallel Computing Final Project

Timmy Galvin

Massachusetts Institute of Technology

Department of EECS

Cambridge, MA, USA

tgalvin@mit.edu

ABSTRACT

Place recognition is an important aspect of navigation,

especially in GPS-restricted environments. Internal

measurement systems and vision-aided navigation are suitable

replacements for GPS in short time spans, but internal error or

drift soon starts to accumulate and will destroy estimations

unless a new corrective measure can be taken. Place

recognition allows for a visually-driven navigation system to

recognize a previous location it has visited and to update its

internal model with that observation using loop closure. For

an autonomous robot, this technique truly becomes effective

when it begins to reach real-time operation. However, costly

algorithms slow down the approach and reliance on Matlab as

a simulation technology provide a distorted view of algorithm

speed. This paper proposes switching to Julia for this problem

as it encapsulates both speed and usability and also modifying

some of the more expensive exact calculations to faster

approximations in Julia.

I. INTRODUCTION

Previous work has showed that using place recognition can

eliminate instrument drift when using inertial measurements in

a GPS-restricted environment [1]. However, due to the size of

the data sets being processed and the computational

complexity of the algorithms, efforts to achieve a real-time

solution have not been entirely successful. Two of the issues

impeding this progress are addressed in this paper. First, the

use of overly accurate algorithms with high computational

complexity and slow execution times create a bottleneck for

the discussed place recognition approach. Second, the use of

Matlab as the language to profile different approaches’

implementations leads to a perceivable skew in which are

pursued further as Matlab tends to favor those algorithms that

can be vectorized.

The remainder of this paper will be structured to first

provide an overview of the place recognition technique that

will be analyzed and optimized in Julia. Following that, I will

present my modifications to the algorithm using Julia and non-

black box methods. The results section will summarize the

differences between the new approach in Julia and the old

Matlab implementation. Finally I will discuss some the results

and some pending challenges that must be addressed before

Julia can begin to replace Matlab.

II. METHODS

Place Recognition

 Place recognition is determining whether an image of

location matches a previously taken from the same location.

However, a direct pixel-by-pixel comparison is insufficient as

the approach must be able to handle images taken at slightly

different locations, different angles, and at different times

(leading to different lighting, slight changes, etc.). To

compare the current image, it is vital to convert it from a pixel

representation to a feature representation. Using a previously

calculated vocabulary or set of features, the image can be

transformed into a scene descriptor, a one-dimensional array

with entries that represent whether that corresponding feature

in the feature vocabulary is present or absent in the image

using algorithms such as SURF in [2] and as show in Figure 1.

To find how similar two individual images after this

transformation, we only need to calculate the dot product

between the two scene descriptors. However, this single-

scene comparison performs poorly when applied to real-world

data because there are often similar looking scenes that one

may see (e.g., repetitive sides of a building or trees and

shrubbery).

Figure 1: Generating a scene descriptor using a previously generated

feature vocabulary.

 To improve over the single-scene comparison approach, we

can instead look at sequences of scenes. We construct a

similarity matrix that represents each combination of

normalized dot product as show in Figure 2. With this

representation, a series of scenes that are highly similar will

show itself as an off-diagonal trace or a consecutive series of

high value elements on an off-diagonal. These off-diagonal

traces can be found by applying a local sequence finding

algorithm. We take advantage of previous work done on this

problem by biologists doing DNA comparisons and use a

modified version of their Smith-Waterman algorithm [3].

Figure 2: Constructing a similarity matrix from scene descriptors.

 Searching for local sequences in the unmodified similarity

matrix leads to a large number of false positives. These bad

results are due to dominant features among sets of images.

One can think of these dominant features as commonly

occurring elements in some environmental subset (e.g.,

building features, trees, and roads). This observation leads us

to want to remove the dominant features of our images, and

therefore also our similarity matrix.

 We can remove the dominant features of our similarity

matrix by removing the most significant singular values and

their corresponding singular vectors. Previous work has

leveraged the rapid fall-off of singular values (Figure 3) and

removed r singular values to maximize the entropy of the

remaining singular values as shown in Equations 1a, b, c, and

d. The combination of this reduction and the application of

the modified Smith-Waterman algorithm allow us to identify

places that have previously visited.

Figure 3: Singular value drop-off for a standard similarity matrix.

Equations 1a,b,c,d: Reducing the similarity matrix by maximizing

singular value entropy.

While this full approach yields accurate results, both the full

singular value decomposition and the Smith-Waterman

algorithm parts of it are too slow to allow for real-time

deployment. This is where this paper attempts to make

improvements.

Proposed Improvements with Julia

 I chose to work on improving this place recognition

algorithm in Julia as it would allow for better general

performance than the same implementation in Matlab, it

would remove the dependence on black-box libraries, and it

would maintain its general usability by the engineering

community that has developed skills with Matlab over the

years. As mentioned above, I implemented the algorithm in

Julia to mainly focus on the bottlenecks of the singular value

decomposition and the Smith-Waterman local sequencing

algorithm.

Partial Decomposition Algorithm

 As seen in Figure 4, the reduced version of the similarity

matrix only depends on the k least significant singular values

and corresponding singular vectors. While this fact might

immediately lead one to think that a full and accurate

decomposition is necessary, this relationship can be trivially

restated as a function of only the n-k most significant singular

values and related singular vectors, as shown in Equation 2.

This simple rephrasing of the reduction opens the door to the

use of a partial, or approximate, singular value decomposition.







1*

1

'
r

i

T

iii vvAA 

Equation 2: Rephrasing of reduction to require only approximate

decomposition.

 While both ARPACK, PROPACK, and other libraries have

implementations of approximate singular value

decompositions (SVDS) available (Figure 4), a goal of this

project, and of some Julia contributors, is to remove some of

that black-box algorithm dependency. So in that effort, I put

together a Golub-Kahan-Lanczos Bidiagonalization algorithm

in Julia (the same approach used in PROPACK) to calculate

the approximate singular value decomposition. The Golub-

Kahan-Lanczos technique is an iterative solver that constructs

a bidiagonal matrix with the same singular values as the

original matrix as seen in Equation 3. The decomposition of

the bidiagonal matrix can be computed quickly using the QR

decomposition [4].

Figure 4: Execution times of various library implementations of

approximate singular value decompositions.

Equation 3: Bidiagonalization with same approximate singular (Ritz)

values as A.

 An issue with the Golub-Kahan-Lanczos method is that

through its iterations, the left and right Lanczos vectors lose

their mutual orthoginality. This behavior requires special

attention as it will cause the calculation of repeated Ritz

values (the approximated singular values). In modifying the

simple Golub-Kahan-Lanczos algorithm, I investigated

multiple techniques: full orthoginalization, partial

orthoginalization, and restarting. While restarting is the

approach often implemented in libraries that use the Golub-

Kahan-Lanczos approach, I investigated the different solutions

for this specific place recognition problem. For matrices of

the form used in place recognition, Figure 5 shows the

performance of my implementations of the approximate SVD

algorithms on sample similarity matrices.

Figure 5: Performance of different GKL implementations.

The main method for the GKL approach with thick-restart is

shown below in Code 1.

Code 1: Main method for GKL with thick-restarting.

Smith-Waterman Algorithm

 The Smith-Waterman algorithm, unlike other sequencing

algorithms, looks at local sequences instead of the total

sequence. As it is a dynamic programming algorithm, it does

not perform well in Matlab as it relies on either nested for

loops or recursion. The algorithm generates a matrix H in

manner show in Equation 4 [6].

Equation 4: Smith-Waterman algorithm for the creation of H.

 I chose to re-implement the Smith-Waterman algorithm in

Julia to achieve a better comparison to a deployable C

implementation while still leaving the code in a singular form

that is easily understood and modifiable. It would also make

another algorithm available to multiple disciplines as this local

trace algorithm spans from biology to vision-aided navigation.

The comparison of the Matlab and Julia implementations are

shown in Figure 7. It can be seen that Julia performed

significantly better than Matlab for all dimensions of the

reduced similarity matrix.

Figure 7: Run-time of Matlab (blue) and Julia (red) Smith-Waterman

implementations.

III. DISCUSSION

 I chose to re-implement some previous work in place

recognition algorithms in Julia to show off what Julia has to

offer to professional engineering. It allows one to profile

realistic deployment run-times without requiring the

maintenance of multiple sources (Matlab and C). It also has

very high usability and is a quick language to learn for

someone who has experience in Matlab.

 Members of the Julia community are working on an

IterativeSolvers package–now just in its fledgling stages–in an

effort to move away from the black-box nature of the standard

linear algebra libraries. The goal would be to create readable

and organic methods and remove the reliance on ARPACK.

My work showed me just how unreadable those libraries are

and also that revealing the implementation exposes a great

deal of fine-tuning to the user.

 While I was unable to fully match the performance of the

ARPACK implementation of approximate singular value

decomposition, I still believe this work was a success. In

converting this work into Julia and slightly modifying the

algorithms used (full decomposition to partial), I was able to

achieve notable speedups towards the goal of real-time

deployment. Figure 8 shows the difference between Matlab

and Julia implementations of each stage of the place

recognition algorithm. It is important to note that the Matlab

implementation includes a full decomposition instead of the

approximate decomposition utilized in the Julia version.

Figure 8: Runtime of original Matlab code versus Julia

implementation.

 I found that this work reinforced my belief that engineers

should begin to use Julia over Matlab, especially for some of

their simpler implementations. Julia definitely has significant

ground to cover when compared to the number of toolboxes

that Matlab supports (at cost). And Matlab is easier to install

and to perform some operations like plotting in. However, the

recent work in increasing collaborative documentation for

Julia and in creating a Matlab-to-Julia converter will hopefully

convert more engineers and programmers into avid Julia users.

IV. CONCLUSIONS

 In this paper I argue the use of Julia in comparison to

Matlab for profiling purposes. To support my claim, I

converted a place recognition algorithm into Julia and in doing

so, wrote various implementations of the Golub-Kahan-

Lanzcos Bidiagonalization algorithm and a Julia version of the

local sequencing Smith-Waterman algorithm. I showed that

speed improvements were achieved through this change of

language and slight algorithmic modification. Finally, I

discussed some recent work that should further encourage the

use of Julia in the engineering community.

REFERENCES

[1] R. Madison, et al., "Soldier Affixed, Vision Aided Navigation

Technology (SAVANT): Part 1," in ION Joint Navigation Conference,
Colorado Springs, Colorado, 2011.

[2] H. Bay, et al., "SURF : Speeded Up Robust Features," in
Computer Vision and Image Understanding (CVIU), 2008, pp.
346-359.

[3] K. L. Ho and P. Newman, "Detecting loop closure with scene
sequences," International Journal of Computer Vision, vol. 74,
pp. 261-286, 2007.

[4] V. Hernandez, et al. “Restarted Lanczos Bidiagonalization for the SVD
in SLEPc.” SLEPc Technical Report STR-8. 2007.

[5] L. Hamilton, et al. “ Nav-by-Search: Exploiting Geo-referenced
Image Databases for Absolute Position Updates.” ION GNSS+
2013, 2013.

