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ABSTRACT 

 

Place recognition is an important aspect of navigation, 

especially in GPS-restricted environments.  Internal 

measurement systems and vision-aided navigation are suitable 

replacements for GPS in short time spans, but internal error or 

drift soon starts to accumulate and will destroy estimations 

unless a new corrective measure can be taken.  Place 

recognition allows for a visually-driven navigation system to 

recognize a previous location it has visited and to update its 

internal model with that observation using loop closure.  For 

an autonomous robot, this technique truly becomes effective 

when it begins to reach real-time operation.  However, costly 

algorithms slow down the approach and reliance on Matlab as 

a simulation technology provide a distorted view of algorithm 

speed.  This paper proposes switching to Julia for this problem 

as it encapsulates both speed and usability and also modifying 

some of the more expensive exact calculations to faster 

approximations in Julia. 
  

I. INTRODUCTION  

 

Previous work has showed that using place recognition can 

eliminate instrument drift when using inertial measurements in 

a GPS-restricted environment [1].  However, due to the size of 

the data sets being processed and the computational 

complexity of the algorithms, efforts to achieve a real-time 

solution have not been entirely successful.  Two of the issues 

impeding this progress are addressed in this paper.  First, the 

use of overly accurate algorithms with high computational 

complexity and slow execution times create a bottleneck for 

the discussed place recognition approach.  Second, the use of 

Matlab as the language to profile different approaches’ 

implementations leads to a perceivable skew in which are 

pursued further as Matlab tends to favor those algorithms that 

can be vectorized. 

 

The remainder of this paper will be structured to first 

provide an overview of the place recognition technique that 

will be analyzed and optimized in Julia.  Following that, I will 

present my modifications to the algorithm using Julia and non-

black box methods.  The results section will summarize the 

differences between the new approach in Julia and the old 

Matlab implementation.  Finally I will discuss some the results 

and some pending challenges that must be addressed before 

Julia can begin to replace Matlab. 

 

II. METHODS 

 

Place Recognition 

 

    Place recognition is determining whether an image of 

location matches a previously taken from the same location.  

However, a direct pixel-by-pixel comparison is insufficient as 

the approach must be able to handle images taken at slightly 

different locations, different angles, and at different times 

(leading to different lighting, slight changes, etc.).  To 

compare the current image, it is vital to convert it from a pixel 

representation to a feature representation.  Using a previously 

calculated vocabulary or set of features, the image can be 

transformed into a scene descriptor, a one-dimensional array 

with entries that represent whether that corresponding feature 

in the feature vocabulary is present or absent in the image 

using algorithms such as SURF in [2] and as show in Figure 1.  

To find how similar two individual images after this 

transformation, we only need to calculate the dot product 

between the two scene descriptors.  However, this single-

scene comparison performs poorly when applied to real-world 

data because there are often similar looking scenes that one 

may see (e.g., repetitive sides of a building or trees and 

shrubbery). 

 
Figure 1: Generating a scene descriptor using a previously generated 

feature vocabulary. 
 



    To improve over the single-scene comparison approach, we 

can instead look at sequences of scenes.  We construct a 

similarity matrix that represents each combination of 

normalized dot product as show in Figure 2.  With this 

representation, a series of scenes that are highly similar will 

show itself as an off-diagonal trace or a consecutive series of 

high value elements on an off-diagonal.  These off-diagonal 

traces can be found by applying a local sequence finding 

algorithm.  We take advantage of previous work done on this 

problem by biologists doing DNA comparisons and use a 

modified version of their Smith-Waterman algorithm [3]. 

 

 

 
Figure 2: Constructing a similarity matrix from scene descriptors. 

 

 

    Searching for local sequences in the unmodified similarity 

matrix leads to a large number of false positives.  These bad 

results are due to dominant features among sets of images.  

One can think of these dominant features as commonly 

occurring elements in some environmental subset (e.g., 

building features, trees, and roads).  This observation leads us 

to want to remove the dominant features of our images, and 

therefore also our similarity matrix. 

 

    We can remove the dominant features of our similarity 

matrix by removing the most significant singular values and 

their corresponding singular vectors.  Previous work has 

leveraged the rapid fall-off of singular values (Figure 3) and 

removed r singular values to maximize the entropy of the 

remaining singular values as shown in Equations 1a, b, c, and 

d.  The combination of this reduction and the application of 

the modified Smith-Waterman algorithm allow us to identify 

places that have previously visited. 

 

 
Figure 3: Singular value drop-off for a standard similarity matrix. 

 

 
Equations 1a,b,c,d: Reducing the similarity matrix by maximizing 

singular value entropy. 

 

While this full approach yields accurate results, both the full 

singular value decomposition and the Smith-Waterman 

algorithm parts of it are too slow to allow for real-time 

deployment.  This is where this paper attempts to make 

improvements. 
 

Proposed Improvements with Julia 

 

    I chose to work on improving this place recognition 

algorithm in Julia as it would allow for better general 

performance than the same implementation in Matlab, it 

would remove the dependence on black-box libraries, and it 

would maintain its general usability by the engineering 

community that has developed skills with Matlab over the 

years.  As mentioned above, I implemented the algorithm in 

Julia to mainly focus on the bottlenecks of the singular value 

decomposition and the Smith-Waterman local sequencing 

algorithm. 
 

Partial Decomposition Algorithm 

 

    As seen in Figure 4, the reduced version of the similarity 

matrix only depends on the k least significant singular values 

and corresponding singular vectors.  While this fact might 

immediately lead one to think that a full and accurate 

decomposition is necessary, this relationship can be trivially 

restated as a function of only the n-k most significant singular 

values and related singular vectors, as shown in Equation 2.  

This simple rephrasing of the reduction opens the door to the 

use of a partial, or approximate, singular value decomposition. 
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Equation 2: Rephrasing of reduction to require only approximate 

decomposition. 

 

    While both ARPACK, PROPACK, and other libraries have 

implementations of approximate singular value 

decompositions (SVDS) available (Figure 4), a goal of this 

project, and of some Julia contributors, is to remove some of 

that black-box algorithm dependency.  So in that effort, I put 

together a Golub-Kahan-Lanczos Bidiagonalization algorithm 

in Julia (the same approach used in PROPACK) to calculate 

the approximate singular value decomposition.  The Golub-

Kahan-Lanczos technique is an iterative solver that constructs 

a bidiagonal matrix with the same singular values as the 

original matrix as seen in Equation 3.  The decomposition of 



the bidiagonal matrix can be computed quickly using the QR 

decomposition [4]. 

 
Figure 4: Execution times of various library implementations of 

approximate singular value decompositions. 

 

 

 
Equation 3: Bidiagonalization with same approximate singular (Ritz) 

values as A. 

 

    An issue with the Golub-Kahan-Lanczos method is that 

through its iterations, the left and right Lanczos vectors lose 

their mutual orthoginality.  This behavior requires special 

attention as it will cause the calculation of repeated Ritz 

values (the approximated singular values).  In modifying the 

simple Golub-Kahan-Lanczos algorithm, I investigated 

multiple techniques: full orthoginalization, partial 

orthoginalization, and restarting.  While restarting is the 

approach often implemented in libraries that use the Golub-

Kahan-Lanczos approach, I investigated the different solutions 

for this specific place recognition problem.  For matrices of 

the form used in place recognition, Figure 5 shows the 

performance of my implementations of the approximate SVD 

algorithms on sample similarity matrices. 

 
Figure 5: Performance of different GKL implementations. 

 

The main method for the GKL approach with thick-restart is 

shown below in Code 1. 

 

 
Code 1: Main method for GKL with thick-restarting. 

 

 

 

 



Smith-Waterman Algorithm 

 

    The Smith-Waterman algorithm, unlike other sequencing 

algorithms, looks at local sequences instead of the total 

sequence.  As it is a dynamic programming algorithm, it does 

not perform well in Matlab as it relies on either nested for 

loops or recursion.  The algorithm generates a matrix H in 

manner show in Equation 4 [6]. 

 

 
Equation 4: Smith-Waterman algorithm for the creation of H. 

 

    I chose to re-implement the Smith-Waterman algorithm in 

Julia to achieve a better comparison to a deployable C 

implementation while still leaving the code in a singular form 

that is easily understood and modifiable.  It would also make 

another algorithm available to multiple disciplines as this local 

trace algorithm spans from biology to vision-aided navigation.  

The comparison of the Matlab and Julia implementations are 

shown in Figure 7.  It can be seen that Julia performed 

significantly better than Matlab for all dimensions of the 

reduced similarity matrix. 

 
Figure 7: Run-time of Matlab (blue) and Julia (red) Smith-Waterman 

implementations. 

 

III. DISCUSSION 

 

    I chose to re-implement some previous work in place 

recognition algorithms in Julia to show off what Julia has to 

offer to professional engineering.  It allows one to profile 

realistic deployment run-times without requiring the 

maintenance of multiple sources (Matlab and C).  It also has 

very high usability and is a quick language to learn for 

someone who has experience in Matlab. 

 

    Members of the Julia community are working on an 

IterativeSolvers package–now just in its fledgling stages–in an 

effort to move away from the black-box nature of the standard 

linear algebra libraries.  The goal would be to create readable 

and organic methods and remove the reliance on ARPACK.  

My work showed me just how unreadable those libraries are 

and also that revealing the implementation exposes a great 

deal of fine-tuning to the user. 

 

    While I was unable to fully match the performance of the 

ARPACK implementation of approximate singular value 

decomposition, I still believe this work was a success.  In 

converting this work into Julia and slightly modifying the 

algorithms used (full decomposition to partial), I was able to 

achieve notable speedups towards the goal of real-time 

deployment.  Figure 8 shows the difference between Matlab 

and Julia implementations of each stage of the place 

recognition algorithm.  It is important to note that the Matlab 

implementation includes a full decomposition instead of the 

approximate decomposition utilized in the Julia version. 

 

 
Figure 8: Runtime of original Matlab code versus Julia 

implementation. 

 

    I found that this work reinforced my belief that engineers 

should begin to use Julia over Matlab, especially for some of 

their simpler implementations.  Julia definitely has significant 

ground to cover when compared to the number of toolboxes 

that Matlab supports (at cost).  And Matlab is easier to install 

and to perform some operations like plotting in.  However, the 

recent work in increasing collaborative documentation for 

Julia and in creating a Matlab-to-Julia converter will hopefully 

convert more engineers and programmers into avid Julia users. 

 

IV. CONCLUSIONS 

 

    In this paper I argue the use of Julia in comparison to 

Matlab for profiling purposes.  To support my claim, I 

converted a place recognition algorithm into Julia and in doing 

so, wrote various implementations of the Golub-Kahan-

Lanzcos Bidiagonalization algorithm and a Julia version of the 

local sequencing Smith-Waterman algorithm.  I showed that 

speed improvements were achieved through this change of 

language and slight algorithmic modification.  Finally, I 

discussed some recent work that should further encourage the 

use of Julia in the engineering community. 
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