
An Approximate Singular Value Decomposition of Large Matrices in Julia

Alexander J. Turner1, ∗

1Harvard University, School of Engineering and Applied Sciences, Cambridge, MA, USA.

In this project, I implement a parallel approximate singular value decomposition (SVD)

in Julia. The approach taken here follows the algorithm described by Friedland et al.,

[1] and implement it using AbstractMatrices and DArrays in Julia to give the user

additional flexibility. For additional speed, the algorithm makes direct calls to the DGEMV

routine in the BLAS kernels. An error analysis using (1) random matrices drawn from

a uniform distribution, (2) random matrices drawn from a normal distribution, and (3) a

real image is performed to quantify the error induced by using the approximate algorithm.

The error is found to be less than 6% and the algorithm exhibits good scaling for large

matrices. This algorithm is ready to be used by other Julia users and can be found online

at https://github.com/alexjturner/SVDapprox.

I. INTRODUCTION

Analyzing big data may require finding an approximate representation for the system due to

computational limitations. A popular method for approximating large systems is by first factorizing

the system with the Singular Value Decomposition (SVD). The SVD decomposes an m×n matrix

A as,

A = UΣVT (1)

where U is an m×m matrix with orthonormal columns (referred to as the left-singular vectors),

Σ is an m× n diagonal matrix with monotonically decreasing diagonal entries (referred to as the

singular values), and VT is an n× n matrix with orthonormal rows (referred to as the right-singular

vectors).

This matrix factorization can be employed in matrix compression by approximating matrix A

as,

A ≈ Ak = UkΣkV
T
k (2)

∗Electronic address: aturner@fas.harvard.edu

https://github.com/alexjturner/SVDapprox
mailto:aturner@fas.harvard.edu

2

where Ak is a k-rank approximation to A, Uk is the first k columns of U, Σk is the upper left

k × k portion of Σ, and VT
k is the first k rows of VT .

Computing the SVD is typically done in a two step process by first reducing to a bidiagonal

matrix, O(mn2) operations, and then computing the SVD of the bidiagonal matrix through an

iterative method, O(n) operations. However, a recent paper by Friedland et al. [1] presents an

approach to compute the k-rank approximation to A in O(kmn) operations using an iterative

Monte Carlo sampling approach. An important point for this algorithm is that each iteration is

guaranteed to improve the approximation of A. The resulting k-rank approximation from this

algorithm will be referred to as B,

B ≈ Ak (3)

II. SUMMARY OF THE ALGORITHM

The algorithm relies heavily on the Modified Gram-Schmidt Algorithm (MGSA) that I’ll briefly

describe before detailing the algorithm.

A. Modified Gram-Schmidt Algorithm

Following [1], the Gram-Schmidt process obtains a set of orthogonal and orthonormal vectors

w1, . . . ,wp and x1, . . . ,xp, respectively, from a set of l ≥ p vectors z1, . . . , zl. A Gram-Schmidt

process works by projecting the vector z onto the line spanned by the orthogonal vector w. Fig. 1

shows the first two steps in this process.

FIG. 1: The first two steps in the Gram-Schmidt process, adapted from [2].

In the Gram-Schmidt process the orthogonal vectors are computed as,

wk = zk − projw1
(zk)− projw2

(zk)− · · · − projw1
(zk−1) (4)

3

however, the classical Gram-Schmidt process is numerically unstable and can be stabilized by a

minor modification, yielding the Modified Gram-Schmidt Algorithm,

w
(1)
k = zk − projw1

(zk),

w
(2)
k = w

(1)
k − projw2

(z
(1)
k),

...

w
(k−2)
k = w

(k−3)
k − projwk−2

(z
(k−3)
k),

w
(k−1)
k = w

(k−2)
k − projwk−1

(z
(k−2)
k).

(5)

The orthonormal vectors can then be computed as,

xk =
wk

||wk||
(6)

The Modified Gram-Schmidt Algorithm requires O(nk2) operations.

B. Algorithm

The rest of the algorithm proceeds as follows. The algorithm begins by randomly choosing

k columns from A, denoted by c1, . . . , ck. Then an orthonormal set x1, . . . ,xk is obtained from

c1, . . . , ck using the MGSA. This orthonormal set can then be used to compute the first approxi-

mation of B as,

B0 =
k∑

i=1

xi

(
ATxi

)T
(7)

This computation requires O(kmn) operations. However, it should be reasonably straight forward

to parallelize this computation through a variety of approaches. Additionally, B0 can be compactly

stored by only storing k pairs of n and m length vectors as,

B0 = x1y
T
1 + x2y

T
2 + . . .+ xky

T
k (8)

where yi = ATxi.

We can then iteratively improve our approximation of B by selecting another l columns from

A (preferably that were not chosen before) and updating B by first defining the (k + l) × (k + l)

matrix G as,

Gi,j =
(
ATxi

)T (
ATxj

)
(9)

a spectral decomposition of G yields, in O((k + l)3) operations, the λ1 ≥ . . . ≥ λk+l eigenvalues

and v1, . . . ,vk+l orthonormal eigenvectors. We define a (k + l) × k matrix O = [o1, . . . ,ok] as

4

the eigenvectors corresponding to the k largest eigenvectors of G and define U = [u1, . . . ,uk] =

[x1, . . . ,xk+l]O. Columns of U are then the left-singular vectors for the current approximation

of A and
√
λ1 ≥ . . . ≥

√
λk are the corresponding singular values. The right-singular vectors,

V = [v1, . . . ,vk], can be computed as,

vi =
ATui√
λi

(10)

Finally, the new B can be computed as,

B1 =
k∑

i=1

ui

(
ATui

)T
(11)

This process can then be repeated to compute Bt and Bt−1 until,

||Bt−1||
||Bt||

> 1− ε (12)

or the algorithm reaches a predetermined number of iterations.

Each update step relies on the computation of the left-singular vectors to compute B, so it

implicitly yields the singular vectors and singular values.

C. A Note on Norms

We’d like to keep from explicitly constructing B and use the compact representation instead.

We note that this compact representation is the summation of rank-one outer products B =∑k
i=1 B(i) =

∑k
i=1 xi ⊗ yi where xi is an m-vector and yi is an n-vector. For any n-vector d, we

can bound
∣∣∣∣B(i)d

∣∣∣∣ as,∣∣∣∣∣∣B(i)d
∣∣∣∣∣∣ =

∣∣∣∣xiy
T
i d
∣∣∣∣ = ||xi||

∣∣yT
i d
∣∣ ≤ ||xi|| ||yi|| ||d|| (13)

Therefore
∣∣∣∣B(i)

∣∣∣∣ ≤ ||xi|| ||yi||. Additionally, we can use the triangle inequality that says,∣∣∣∣∣∣∑B(i)
∣∣∣∣∣∣ ≤∑∣∣∣∣∣∣B(i)

∣∣∣∣∣∣ (14)

Putting this all together we have,

k∑
i=1

||xi|| ||yi|| ≤ ||B|| (15)

and we can now compute the exit criteria for iteration as,∑k
i=1

∣∣∣∣∣∣x(t−1)
i

∣∣∣∣∣∣ ∣∣∣∣∣∣y(t−1)
i

∣∣∣∣∣∣∑k
i=1

∣∣∣∣∣∣x(t)
i

∣∣∣∣∣∣ ∣∣∣∣∣∣y(t)
i

∣∣∣∣∣∣ > 1− ε (16)

without computing the expensive O(kmn) matrix-vector products.

5

III. IMPLEMENTATION

The main bottleneck of the code should be computing O(kmn) matrix-vector products. I

implemented my own code profiler to verify that this was indeed the limiting step in the algorithm

and maximize my time spent optimizing the code. The code profiler produces output like that

shown below:

julia> svd_approx(rand(10000,10000))

ITER 0: rand_cols - 43.20%

ITER 0: run_orth - 2.44%

ITER 0: compute_B - 48.75%

ITER 0: compute_norm - 5.61%

ITER 0: 1.65529299 seconds

ITER 1: rand_cols - 3.82%

ITER 1: run_orth - 2.32%

ITER 1: compute_G - 44.73%

ITER 1: eig_G - 2.10%

ITER 1: svd_G - 0.33%

ITER 1: compute_B - 43.40%

ITER 1: compute_norm - 3.29%

ITER 1: 3.21842003 seconds

.

.

.

Exited at iter 8 in 64.67 seconds

From this I was able to diagnose which routines were the bottlenecks in the code. Initially, the

compute_norm routine was taking most of the computational time because I was constructing

B to take the norm. After profiling the code I realized that I needed to find a different way to

compute the exit criteria. This prompted the analysis in Section II C.

A. Computing the Matrix-Vector Product

The most expensive step in the algorithm is the k matrix-vector products. I parallelized this

section of the code using two different approaches. The first approach is used if the user inputs the

matrix A as an AbstractMatrix. This approach assumes that A is small enough to fit in the

memory of a single processor. In this case, we simply share A across all processors and distribute

the xi’s across the processors and compute p local matrix-vector product using DGEMVs. This is

6

implemented as a map reduce with DGEMV as the mapped operator and a horizontal concatenation

reduction operator. The schematic for this approach is shown in Fig. 3.

FIG. 2: Schematic of the memory layout for the case using abstract matrices. Gray blocks must

be known across all processors and the colored blocks are local to one processor.

The second approach is used if the user inputs the matrix A as an DArray. This approach

assumes that A is too large to store in memory on a single processor and must be distributed

across multiple machines. We can no longer just compute a local matrix-vector product because

it would require passing large amounts of data between the processors because each processor

would need to know all elements of A. Instead we leave the original distribution of A and simply

distribute the xi across all processors. We then compute pieces of the matrix-vector product and

perform a reduction across all processors. For this approach we compute k matrix-vector products

in serial but break each matrix-vector product up into smaller components. It is implemented as a

map reduce with DGEMV as the mapped operator and an addition operator for the reduction. The

schematic for this approach is shown in Fig. 3.

The first approach is simpler, should allow for more parallelization, and should be faster for

small matrices, because of this we use it as the default unless the user supplies a DArray.

IV. ERROR ANALYSIS

We can compute the error induced by using this approximate algorithm as,

εapprox =
||A−B||
||A||

(17)

7

FIG. 3: Schematic of the memory layout for the case using distributed arrays. Gray blocks must

be known across all processors and the colored blocks are local to one processor.

however there is an error induced by doing a k-rank approximation of A even with the true SVD,

εtrue =
||A−Ak||
||A||

(18)

So we instead look at the additional error induced by doing this approximation,

ε =

∣∣∣∣εtrue − εapproxεtrue

∣∣∣∣ (19)

This was tested for two different types of matrices: (1) random matrices drawn from a uniform

distribution using rand and (2) random matrices drawn from a normal distribution using randn.

These two distributions were chosen for their different eigenvalue spectrum. The former will exhibit

a sharp drop off in eigenvalues while the latter will exhibit a much smoother decay in eigenvalues.

Fig. 4 shows the error as a function of rank for the first case and Fig. 5 shows the error for the

second case. We can also see the different eigenvalue spectrums for these two cases. The algorithm

does slightly better for the second case by this metric. However, both matrices compare quite well

with less than 6% error induced.

I performed an additional test using a real image (see Fig. 6). The eigenvalue spectrum for

the real image is similar to that of the random matrix drawn from a uniform distribution but has

a slightly smoother transition. We find that the approximate SVD captures most of the features

shown in the true SVD.

8

FIG. 4: (Left) The percent error induced by using the approximate SVD and (Right) the

eigenvalue spectrum for the random matrix drawn from a uniform distribution.

FIG. 5: (Left) The percent error induced by using the approximate SVD and (Right) the

eigenvalue spectrum for the random matrix drawn from a normal distribution.

V. SPEEDUP

We test the two implementations of the algorithm with random matrices drawn from a uniform

distribution. The tests use the default parameters set for the algorithm. Fig. 8 shows the wall

time as a function of matrix size for the two implementations of the approximate algorithm as

well as the true SVD. We see that both of the approximate implementations are slower for small

(< 107 elements) matrices but exhibit much better scaling, indicated by both implementations

beating the true SVD for matrices larger than 108 elements [10, 000×10, 000]. The implementation

using AbstractMatrices was faster than the implementation using DArrays, however only the

DArray implementation can accommodate matrices too large to store on a single machine.

9

FIG. 6: (Left) The image used for the SVD test [800× 542]. (Right) The RGB eigenvalue

spectrum for the image.

FIG. 7: (Left) The approximated image using the true SVD, Ak. (Right) The approximated

image using the approximate SVD, B.

VI. CONCLUSIONS

I implemented an approximate singular value decomposition in Julia following the algorithm

described by Friedland et al., [1]. The algorithm only induced small (< 6%) errors and exhibits

good scaling for large (< 107 elements) matrices. Additionally, the algorithm can be performed

even if the matrix is too large to exist on a single machine. The code is available online through

10

FIG. 8: Wall time for the true SVD (blue), approximate SVD with shared matrices (red), and the

approximate SVD with distributed arrays (green). All tests were performed using 3.4GHz

quad-core i5 processors (4 physical cores and 4 hyper threaded cores) and 32Gb of RAM.

github here: https://github.com/alexjturner/SVDapprox.

[1] S. Friedland, A. Niknejad, M. Kaveh, and H. Zare, “Fast monte-carlo low rank approximations for

matrices,” Proc. IEEE SoSE, pp. 218–223, 2006.

[2] Wikipedia, “Gram-schmidt process,” http://en.wikipedia.org/wiki/Gram-Schmidt process, 2013.

https://github.com/alexjturner/SVDapprox

