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}  The singular value decomposition (SVD) is a widely used 
algorithm: 
}  Data compression: allows for compact representation of matrices 
}  Data assimilation: determine fastest growing perturbations 

}  Does not scale well: O(n3) for a square matrix 

}  Approximate algorithm based on Friedland et al., (2009) 

}  Two attractive features: 
}  Better scaling: O(kn2) for a square matrix 
}  Small memory footprint 

Motivation behind an Approximate SVD 

Mo#va#on	  

A = U⌃VT

B ⇡ Ak = Uk⌃kV
T
k



Description of the Algorithm 

Algorithm	  

 1 C       = rand_cols(A,k) 

 2 X       = run_orth(C) 

 3 (Bx,By) = compute_B(X,A,k) 

 4 N       = compute_norm(Bx,By,k) 

 5 while iter == true 

 6    C       = rand_cols(A,ℓ) 

 7    X       = run_orth(hcat(X,C)) 

 8    G       = compute_G(X,A,k+ℓ) 

 9    (O,λ)   = eig_G(G,k,ℓ) 

10    (U,S)   = svd_G(X,O,λ) 

11    (Bx,By) = compute_B(U,A,k) 

12    N       = compute_norm(Bx,By,k) 

13 end 

Psuedocode 
 1 Randomly draw “k” columns from “A” 
 2 Obtain an orthonormal set from the columns 
 3 Construct the “B” matrix using the ⊥ set 
 4 Compute the norm of “B”  
 5 Begin iterating 
 6    Randomly draw “ℓ” more columns 
 7    Obtain a new ⊥ set 
 8    Construct the “G” matrix using the ⊥ set 
 9    Compute the eigenvectors/values of “G” 
10    Compute the SVD of “G” 
11    Compute the “B” using the SVD of “G” 
12    Compute the norm of “B”  
13 Iterate 

Explanation 

}  Iteratively sample A and obtain orthonormal sets 
}  Uses QR factorization to obtain orthonormal set 
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Explanation 

}  Apply orthonormal sets to the A matrix 
}  Main bottleneck: O(kmn) complexity 



}  Takes either AbstractMatrices or DArrays 
}  Algorithm proceeds differently depending on the array type 

}  Compactly store matrices as, 

}  k pairs of [m×1], [n×1] vectors instead of an [m×n] matrix 
}  k(m+n) elements instead of mn elements 

}  Never actually construct the full B 

Implementation and Validation of the Algorithm 

B = x1y
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}  Two validation cases: “rand(Nx,Ny)” & “randn(Nx,Ny)” 
 
 
}  True error: 

}  Approximation error: 

}  Error added from approximation:  

Implementation and Validation of the Algorithm 
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}  “rand(Nx,Ny)” case 
}  Sharp dropoff in the eigenvalue spectrum 
}  Nx, Ny = 300 

Implementation and Validation of the Algorithm 

Error Singular Values 
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}  “randn(Nx,Ny)” case 
}  Smooth dropoff in the eigenvalue spectrum 
}  Nx, Ny = 300 

Implementation and Validation of the Algorithm 

Error Singular Values 

Valida#on	  



}  Testing with a real image 
}  Fairly sharp eigenvalue dropoff 

}  Original image is [800×542] 

Implementation and Validation of the Algorithm 

Valida#on	  

True Approximated 

k = 10 k = 20 k = 40 

k = 60 k = 80 k = 100 

k = 125 k = 150 k = 200 

k = 10 k = 20 k = 40 

k = 60 k = 80 k = 100 

k = 125 k = 150 k = 200 



}  Developed a code profiler 

}  Allowed me to quickly 
determine bottlenecks 
}  Helped me choose the norm 

}  Helped me choose default 
parameters  

Profiling the Code 

Profiling	  

julia> svd_approx(rand(10000,10000)) 

ITER  0: rand_cols    - 43.20% 

ITER  0: run_orth     -  2.44% 

ITER  0: compute_B    - 48.75% 

ITER  0: compute_norm -  5.61% 

ITER  0:   1.65529299 seconds 

 

ITER  1: rand_cols    -  3.82% 

ITER  1: run_orth     -  2.32% 

ITER  1: compute_G    - 44.73% 

ITER  1: eig_G        -  2.10% 

ITER  1: svd_G        -  0.33% 

ITER  1: compute_B    - 43.40% 

ITER  1: compute_norm -  3.29% 

ITER  1:   3.21842003 seconds 

. 

. 

. 

Exited at iter  8 in 64.67 seconds 



}  Direct calls to the BLAS/LAPACK 
}  QR factorization (DGEQRF + DORGQR) 
}  Matrix-Vector multiplication (DGEMV) 

}  Parallel matrix multiplication 
}  Need to perform k matrix-vector multiplications at every iteration: 

}  Can do them in simultaneously in parallel or can break them into 
smaller matrix-vector multiplications 

Optimizations 

Op#miza#ons	  
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Optimizations: A Tale of Two DGEMVs 

Op#miza#ons	  

= 

Shared Memory:  k large DGEMVs in parallel on p processors 
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Optimizations: A Tale of Two DGEMVs 

Op#miza#ons	  

= 

Distributed Memory: A broken into p parts, k serial DGEMVs 
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Distributed 

Shared 
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}  Approximate SVD does 
exhibit better scaling 
}  svd_approx @ 108: 64s 

}  svd @ 108: 468s 

 

}  Only use approximate 
SVD for large matrices 

}  Tested the approximate SVD against the built in serial SVD 
(“(U,S,V) = svd(A)”) 
}  “svd(A)” should scale as O(mn2) 

}  “svd_approx(A)” should scale as O(kmn) 

Speedup: Matrix Size 

Speedup	  



}  Implemented an approximate SVD in Julia 
}  Code is currently available on github at: 

“https://github.com/alexjturner/SVDapprox” 
}  Scales as O(kmn) instead of O(mn2) for standard SVD 

}  Currently works with both AbstractMatrices and DArrays 
}  Different algorithm based on the user input 

}  Excellent speedup for large matrices (>108 elements) 

Summary 

Summary	  


