An Approximate Singular Value Decomposition of Large Matrices in Julia

Alexander J.Turner ${ }^{1, *}$
${ }^{1}$ School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
*aturner@fas.harvard.edu

- The singular value decomposition (SVD) is a widely used algorithm:
- Data compression: allows for compact representation of matrices
- Data assimilation: determine fastest growing perturbations
- Does not scale well: $O\left(n^{3}\right)$ for a square matrix

$$
\mathbf{A}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{T}
$$

- Approximate algorithm based on Friedland et al., (2009)

$$
\mathbf{B} \approx \mathbf{A}_{k}=\mathbf{U}_{k} \boldsymbol{\Sigma}_{k} \mathbf{V}_{k}^{T}
$$

- Two attractive features:
- Better scaling: $\mathrm{O}\left(k n^{2}\right)$ for a square matrix
- Small memory footprint

Description of the Algorithm

Psuedocode

```
1 C = rand_cols (A,k)
2 X = run_orth (C)
    (Bx, By) = compute_B(X,A,k)
    = compute_norm(Bx,By,k)
    while iter == true
C = rand_cols (A, \ell)
7 X = run_orth (hcat (X,C))
8 G = compute_G (X,A,k+\ell)
9(O,\lambda) = eig_G(G,k,\ell)
10(U,S) = svd_G (X,O, \lambda)
11(Bx,By) = compute_B(U,A,k)
12 N = compute_norm(Bx,By,k)
13 end
```


Explanation

1 Randomly draw " k " columns from "A"
2 Obtain an orthonormal set from the columns
3 Construct the "B" matrix using the \perp set
4 Compute the norm of "B"
5 Begin iterating
6 Randomly draw " ℓ " more columns
$7 \quad$ Obtain a new \perp set
Construct the "G" matrix using the \perp set Compute the eigenvectors/values of "G" Compute the SVD of "G" Compute the "B" using the SVD of "G" Compute the norm of "B"

Iterate

- Iteratively sample A and obtain orthonormal sets
- Uses QR factorization to obtain orthonormal set

Description of the Algorithm

Psuedocode

```
\(=\) rand_cols \((\mathrm{A}, \mathrm{k})\)
\(=\) run_orth (C)
\((B x, B y)=\) compute_B(X,A,k)
    \(=\) compute_norm (Bx,By,k)
    while iter == true
    \(=\) rand_cols \((A, \ell)\)
    \(\mathrm{X}=\) run_orth (hcat \((\mathrm{X}, \mathrm{C}))\)
    G \(\quad=\) compute_G( \(\mathbf{X}, \mathbf{A}, \mathbf{k}+\boldsymbol{\ell})\)
    \((O, \lambda)=e i g \_G(G, k, \ell)\)
    \((\mathrm{U}, \mathrm{S})=\operatorname{svd\_ G}(\mathrm{X}, \mathrm{O}, \mathrm{\lambda})\)
    \((\mathrm{Bx}, \mathrm{By})=\) compute_B(U,A,k)
    = compute_norm (Bx, By,k)
    end
```


Explanation

1 Randomly draw " k " columns from " A "

2 Obtain an orthonormal set from the columns
3 Construct the "B" matrix using the \perp set
4 Compute the norm of "B"
5 Begin iterating
6 Randomly draw " ℓ " more columns
$7 \quad$ Obtain a new \perp set
8 Construct the "G" matrix using the \perp set Compute the eigenvectors/values of "G" Compute the SVD of "G"
11 Compute the "B" using the SVD of "G"
Compute the norm of "B"
13 Iterate

- Apply orthonormal sets to the A matrix
- Main bottleneck: O(kmn) complexity
- Takes either AbstractMatrices or DArrays
- Algorithm proceeds differently depending on the array type
- Compactly store matrices as,

$$
\mathbf{B}=\mathbf{x}_{1} \mathbf{y}_{1}^{T}+\mathbf{x}_{2} \mathbf{y}_{2}^{T}+\ldots+\mathbf{x}_{k} \mathbf{y}_{k}^{T}
$$

- k pairs of $[m \times 1],[n \times 1]$ vectors instead of an $[m \times n]$ matrix
- $k(m+n)$ elements instead of $m n$ elements
- Never actually construct the full B

Implementation and Validation of the Algorithm

- Two validation cases: "rand $\left(\mathrm{N}_{\mathrm{x}}, \mathrm{N}_{\mathrm{y}}\right)$ " \&"randn $\left(\mathrm{N}_{\mathrm{x}}, \mathrm{N}_{\mathrm{y}}\right)$ "
- True error: $\epsilon_{T}=\frac{\left\|\mathbf{A}-\mathbf{A}_{k}\right\|_{F}}{\|\mathbf{A}\|_{F}}$
- Approximation error: $\epsilon_{A}=\frac{\|\mathbf{A}-\mathbf{B}\|_{F}}{\|\mathbf{A}\|_{F}}$
- Error added from approximation: $\epsilon=\left|\frac{\epsilon_{T}-\epsilon_{A}}{\epsilon_{T}}\right| \times 100$

Implementation and Validation of the Algorithm

- "rand $\left(\mathrm{N}_{\mathrm{x}}, \mathrm{N}_{\mathrm{y}}\right)$ " case
- Sharp dropoff in the eigenvalue spectrum
- $\mathrm{N}_{\mathrm{x}}, \mathrm{N}_{\mathrm{y}}=300$

Singular Values

Error

Implementation and Validation of the Algorithm

- "randn $\left(\mathrm{N}_{\mathrm{x}}, \mathrm{N}_{\mathrm{y}}\right)$ " case
- Smooth dropoff in the eigenvalue spectrum
- $\mathrm{N}_{\mathrm{x}}, \mathrm{N}_{\mathrm{y}}=300$

Singular Values

Error

Implementation and Validation of the Algorithm

- Testing with a real image

- Fairly sharp eigenvalue dropoff
- Original image is $[800 \times 542]$

Approximated

True

Profiling the Code

- Developed a code profiler
- Allowed me to quickly determine bottlenecks
- Helped me choose the norm
- Helped me choose default parameters

```
julia> svd_approx(rand(10000,10000))
ITER 0: rand_cols - 43.20%
ITER 0: run_orth - 2.44%
ITER 0: compute_B - 48.75%
ITER 0: compute_norm - 5.61%
ITER 0: 1.65529299 seconds
ITER 1: rand_cols - 3.82%
ITER 1: run_orth - 2.32%
ITER 1: compute_G - 44.73%
ITER 1: eig_G - 2.10%
ITER 1: svd_G - 0.33%
ITER 1: compute_B - 43.40%
ITER 1: compute_norm - 3.29%
ITER 1: 3.21842003 seconds
```


Optimizations

- Direct calls to the BLAS/LAPACK
- QR factorization (DGEQRF + DORGQR)
- Matrix-Vector multiplication (DGEMV)
- Parallel matrix multiplication
- Need to perform k matrix-vector multiplications at every iteration:

$$
\mathbf{B}=\sum_{i=1}^{k} \mathbf{x}_{i}\left(\mathbf{A}^{T} \mathbf{x}_{i}\right)^{T}
$$

- Can do them in simultaneously in parallel or can break them into smaller matrix-vector multiplications

Optimizations: A Tale of Two DGEMVs

Shared Memory: k large DGEMVs in parallel on p processors

Distributed

Optimizations: A Tale of Two DGEMVs

Distributed Memory: A broken into p parts, k serial DGEMVs

Distributed

Speedup: Matrix Size

- Tested the approximate SVD against the built in serial SVD ("($\mathrm{U}, \mathrm{S}, \mathrm{V}$) = svd(A)")
- "svd (A)" should scale as O(mn²)
- "svd_approx (A)" should scale as O(kmn)
- Approximate SVD does exhibit better scaling
- svd_approx @ 108: 64s - svd @ 108: 468s
- Only use approximate SVD for large matrices

- Implemented an approximate SVD in Julia
- Code is currently available on github at: "https://github.com/alexjturner/SVDapprox"
- Scales as $\mathrm{O}(\mathrm{kmn})$ instead of $\mathrm{O}\left(m n^{2}\right)$ for standard SVD
- Currently works with both AbstractMatrices and DArrays
- Different algorithm based on the user input
- Excellent speedup for large matrices (> 10^{8} elements)

