Harvard University

An Approximate Singular Value Decomposition
of Large Matrices in Julia

Alexander). Turner*

1School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
*aturner@fas.harvard.edu

Motivation behind an Approximate SVD

» The singular value decomposition (SVD) is a widely used
algorithm:

» Data compression: allows for compact representation of matrices

» Data assimilation: determine fastest growing perturbations

» Does not scale well: O(n3) for a square matrix

A=UXV!

» Approximate algorithm based on Friedland et al., (2009)
~ _ T
B~ Ay =U,X, V!

» Two attractive features:

» Better scaling: O(kn?) for a square matrix
» Small memory footprint

Motivation

Description of the Algorithm

Psuedocode Explanation

1cC rand cols (A, k) 1 Randomly draw “k” columns from “A”

2 X run_orth(C) 2 Obtain an orthonormal set from the columns

3 (Bx,By) compute B (X, A, k)

4 N compute norm(Bx, By, k)

5 while iter == true
rand cols(A,?) Randomly draw “¢” more columns
run_orth (hcat(X,C)) Obtain a new L set
compute G (X,A, k+{)
elg G(G,k,)
svd G(X,0,A)
compute B (U, A, k)

compute norm(Bx, By, k)

» Iteratively sample A and obtain orthonormal sets

» Uses QR factorization to obtain orthonormal set

Algorithm

Description of the Algorithm

Psuedocode Explanation

1 C rand cols (A, k) 1 Randomly draw “k” columns from “A”
2 X run_orth (C) 2 Obtain an orthonormal set from the columns
3 (Bx,By) compute B(X,A, k) 3 Construct the “B” matrix using the L set
4 N compute norm (Bx, By, k) 4 Compute the norm of “B”
5 while iter == true 5 Begin iterating
rand cols (A, !) Randomly draw “€” more columns

run_orth (hcat (X,C)) Obtain a new L set

compute G(X,A,k+¢) Construct the “G” matrix using the L set

eig G(G,k, 1) Compute the eigenvectors/values of “G”
svd G(X,0,}) Compute the SVD of “G”

compute B(U,A, k) Compute the “B” using the SVD of “G”
compute norm (Bx, By, k) Compute the norm of “B”

13 Iterate

» Apply orthonormal sets to the A matrix
» Main bottleneck: O(kmn) complexity

Algorithm

Implementation and Validation of the Algorithm

» Takes either AbstractMatrices or DArrays
» Algorithm proceeds differently depending on the array type

» Compactly store matrices as,

B =x1y; +Xoya +...+Xpyi

» K pairs of [mx1], [nx1] vectors instead of an [mxn| matrix
» k(m+n) elements instead of mn elements

» Never actually construct the full B

Validation

Implementation and Validation of the Algorithm

» Two validation cases: “rand (N_,N_)” &“randn (N, N,)"

||A_Al<:||F

» True error: €T — HAH
F

1A - Bllp

» Approximation error: €4 =

Al

» Error added from approximation: € =—

Validation

€T — €A

€T

x 100

Implementation and Validation of the Algorithm

» “rand (N, N)" case

» Sharp dropoff in the eigenvalue spectrum

» N, N, = 300
Singular Values Error
160 T T T T 6 T T
r
140§ -
S 9
120§ X
100 LWN
o 80H g3-
60 | L]
2 2
40 g
20} 1 éE il

0 20 40 60 80 100 0 20 40 60 80 100
7 Rank, &

Validation

Implementation and Validation of the Algorithm

» “randn (N, N,)" case
» Smooth dropoff in the eigenvalue spectrum
» N,,N_ =300

Singular Values Error

w
o)}
(o)}

6"‘| x 100

€r

Percent Error, |"'
N w =N

(=]
T

(=]

Zb 4b 6b 8b 100
i Rank, &

o

Validation

Implementation and Validation of the Algorithm

» Testing with a real image

» Fairly sharp eigenvalue dropoff
» Original image is [800x542]

Approximated

Validation

e=e Red Channel
e=e Green Channel
e=e Blue Channel

Profiling the Code

julia> svd approx(rand(10000,10000))
ITER : rand cols - 43.20%
ITER : run_orth 2.44%
. ITER : compute B
» Developed a code profiler

ITER : compute norm

ITER : 1.65529299

» Allowed me to quickly . rand cols
determine bottlenecks : run_orth

: compute G

» Helped me choose the norm e

: svd G

: compute B - .40%

» Helped me choose default ., compuiie pemn = 3.29%
Parameters : 3.21842003 seconds

Exited at iter 8 in ©64.67 seconds

Profiling

Optimizations

» Direct calls to the BLAS/LAPACK
» QR factorization (DGEQRF + DORGQR)
» Matrix-Vector multiplication (DGEMV)

» Parallel matrix multiplication
» Need to perform k matrix-vector multiplications at every iteration:

k
B = ZX@ (ATXZ')T
1=1

» Can do them in simultaneously in parallel or can break them into
smaller matrix-vector multiplications

Optimizations

Optimizations: A Tale of Two DGEMVs

Shared Memory: k large DGEMVs in parallel on p processors

I]

7

By =

[

ATXl

\

/

Distributed <<

(
\

Optimizations

ATXk

)

/

EEEn

Shared

Optimizations: A Tale of Two DGEMVs

Distributed Memory: A broken into p parts, k serial DGEMVs

(
\

Optimizations

Distributed <<

)

ATXk

/

EEEn

Shared

Speedup: Matrix Size

» Tested the approximate SVD against the built in serial SYD
(“(U,S,V) = svd(A)”)
» “svd (A)” should scale as O(mn?)
» “svd approx (A)” should scale as O(kmn)

103

9 'svd"

102 L ® ® '"svd_approx" (AbstractMatrix))

» Approximate SVD does ®® 'svdapprox' (DAmay) | _.-""
exhibit better scaling
» svd approx @ 108: 64s
» svd @ 108: 468s

Walltime [s]
5 5 &

[
o
N

» Only use approximate
SVD for large matrices

10-3 L

10 103 104 10° 10° 107 108
Matrix Size, mn

Speedup

» Implemented an approximate SVD in Julia

» Code is currently available on github at:
“https://github.com/alexjturner/SVDapprox’
» Scales as O(kmn) instead of O(mn?) for standard SVD

» Currently works with both AbstractMatrices and DArrays

» Different algorithm based on the user input

» Excellent speedup for large matrices (>10° elements)

Summary

