
An Approximate Singular Value Decomposition
of Large Matrices in Julia

Alexander J. Turner1,*

1School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
*aturner@fas.harvard.edu

Harvard	 University	

}  The singular value decomposition (SVD) is a widely used
algorithm:
}  Data compression: allows for compact representation of matrices
}  Data assimilation: determine fastest growing perturbations

}  Does not scale well: O(n3) for a square matrix

}  Approximate algorithm based on Friedland et al., (2009)

}  Two attractive features:
}  Better scaling: O(kn2) for a square matrix
}  Small memory footprint

Motivation behind an Approximate SVD

Mo#va#on	

A = U⌃VT

B ⇡ Ak = Uk⌃kV
T
k

Description of the Algorithm

Algorithm	

 1 C = rand_cols(A,k)

 2 X = run_orth(C)

 3 (Bx,By) = compute_B(X,A,k)

 4 N = compute_norm(Bx,By,k)

 5 while iter == true

 6 C = rand_cols(A,ℓ)

 7 X = run_orth(hcat(X,C))

 8 G = compute_G(X,A,k+ℓ)

 9 (O,λ) = eig_G(G,k,ℓ)

10 (U,S) = svd_G(X,O,λ)

11 (Bx,By) = compute_B(U,A,k)

12 N = compute_norm(Bx,By,k)

13 end

Psuedocode
 1 Randomly draw “k” columns from “A”
 2 Obtain an orthonormal set from the columns
 3 Construct the “B” matrix using the ⊥ set
 4 Compute the norm of “B”
 5 Begin iterating
 6 Randomly draw “ℓ” more columns
 7 Obtain a new ⊥ set
 8 Construct the “G” matrix using the ⊥ set
 9 Compute the eigenvectors/values of “G”
10 Compute the SVD of “G”
11 Compute the “B” using the SVD of “G”
12 Compute the norm of “B”
13 Iterate

Explanation

}  Iteratively sample A and obtain orthonormal sets
}  Uses QR factorization to obtain orthonormal set

Description of the Algorithm

Algorithm	

 1 C = rand_cols(A,k)

 2 X = run_orth(C)

 3 (Bx,By) = compute_B(X,A,k)

 4 N = compute_norm(Bx,By,k)

 5 while iter == true

 6 C = rand_cols(A,ℓ)

 7 X = run_orth(hcat(X,C))

 8 G = compute_G(X,A,k+ℓ)

 9 (O,λ) = eig_G(G,k,ℓ)

10 (U,S) = svd_G(X,O,λ)

11 (Bx,By) = compute_B(U,A,k)

12 N = compute_norm(Bx,By,k)

13 end

Psuedocode
 1 Randomly draw “k” columns from “A”
 2 Obtain an orthonormal set from the columns
 3 Construct the “B” matrix using the ⊥ set
 4 Compute the norm of “B”
 5 Begin iterating
 6 Randomly draw “ℓ” more columns
 7 Obtain a new ⊥ set
 8 Construct the “G” matrix using the ⊥ set
 9 Compute the eigenvectors/values of “G”
10 Compute the SVD of “G”
11 Compute the “B” using the SVD of “G”
12 Compute the norm of “B”
13 Iterate

Explanation

}  Apply orthonormal sets to the A matrix
}  Main bottleneck: O(kmn) complexity

}  Takes either AbstractMatrices or DArrays
}  Algorithm proceeds differently depending on the array type

}  Compactly store matrices as,

}  k pairs of [m×1], [n×1] vectors instead of an [m×n] matrix
}  k(m+n) elements instead of mn elements

}  Never actually construct the full B

Implementation and Validation of the Algorithm

B = x1y
T
1 + x2y

T
2 + . . .+ xky

T
k

Valida#on	

}  Two validation cases: “rand(Nx,Ny)” & “randn(Nx,Ny)”

}  True error:

}  Approximation error:

}  Error added from approximation:

Implementation and Validation of the Algorithm

✏T =
||A�Ak||F

||A||F

✏A =
||A�B||F

||A||F

✏ =

����
✏T � ✏A

✏T

����⇥ 100

Valida#on	

}  “rand(Nx,Ny)” case
}  Sharp dropoff in the eigenvalue spectrum
}  Nx, Ny = 300

Implementation and Validation of the Algorithm

Error Singular Values

Valida#on	

}  “randn(Nx,Ny)” case
}  Smooth dropoff in the eigenvalue spectrum
}  Nx, Ny = 300

Implementation and Validation of the Algorithm

Error Singular Values

Valida#on	

}  Testing with a real image
}  Fairly sharp eigenvalue dropoff

}  Original image is [800×542]

Implementation and Validation of the Algorithm

Valida#on	

True Approximated

k = 10 k = 20 k = 40

k = 60 k = 80 k = 100

k = 125 k = 150 k = 200

k = 10 k = 20 k = 40

k = 60 k = 80 k = 100

k = 125 k = 150 k = 200

}  Developed a code profiler

}  Allowed me to quickly
determine bottlenecks
}  Helped me choose the norm

}  Helped me choose default
parameters

Profiling the Code

Profiling	

julia> svd_approx(rand(10000,10000))

ITER 0: rand_cols - 43.20%

ITER 0: run_orth - 2.44%

ITER 0: compute_B - 48.75%

ITER 0: compute_norm - 5.61%

ITER 0: 1.65529299 seconds

ITER 1: rand_cols - 3.82%

ITER 1: run_orth - 2.32%

ITER 1: compute_G - 44.73%

ITER 1: eig_G - 2.10%

ITER 1: svd_G - 0.33%

ITER 1: compute_B - 43.40%

ITER 1: compute_norm - 3.29%

ITER 1: 3.21842003 seconds

.

.

.

Exited at iter 8 in 64.67 seconds

}  Direct calls to the BLAS/LAPACK
}  QR factorization (DGEQRF + DORGQR)
}  Matrix-Vector multiplication (DGEMV)

}  Parallel matrix multiplication
}  Need to perform k matrix-vector multiplications at every iteration:

}  Can do them in simultaneously in parallel or can break them into
smaller matrix-vector multiplications

Optimizations

Op#miza#ons	

B =
kX

i=1

xi

�
A

T
xi

�T

Optimizations: A Tale of Two DGEMVs

Op#miza#ons	

=

Shared Memory: k large DGEMVs in parallel on p processors

� A … …

By =

2

664

0

BB@

...
A

T
x1
...

1

CCA

0

BB@

...
A

T
x2
...

1

CCA · · ·

0

BB@

...
A

T
xk
...

1

CCA

3

775

Distributed

Shared

Optimizations: A Tale of Two DGEMVs

Op#miza#ons	

=

Distributed Memory: A broken into p parts, k serial DGEMVs

� A … …

Distributed

Shared
By =

2

664

0

BB@

...
A

T
x1
...

1

CCA

0

BB@

...
A

T
x2
...

1

CCA · · ·

0

BB@

...
A

T
xk
...

1

CCA

3

775

}  Approximate SVD does
exhibit better scaling
}  svd_approx @ 108: 64s

}  svd @ 108: 468s

}  Only use approximate
SVD for large matrices

}  Tested the approximate SVD against the built in serial SVD
(“(U,S,V) = svd(A)”)
}  “svd(A)” should scale as O(mn2)

}  “svd_approx(A)” should scale as O(kmn)

Speedup: Matrix Size

Speedup	

}  Implemented an approximate SVD in Julia
}  Code is currently available on github at:

“https://github.com/alexjturner/SVDapprox”
}  Scales as O(kmn) instead of O(mn2) for standard SVD

}  Currently works with both AbstractMatrices and DArrays
}  Different algorithm based on the user input

}  Excellent speedup for large matrices (>108 elements)

Summary

Summary	

