Nemo: A parallelized Lagrangian particle-tracking model

Benjamin Jones

December 12, 2013

Abstract

Lagrangian particle-tracking models are a computationally intensive, but massively parallelizable
method for investigating marine larval dispersal processes, seed dispersal of plants, or a variety of other
material transport processes. In order to fully capture the distribution of potential dispersal patterns,
highly efficient models with the capacity to simulate tens of millions or more particles are needed. Tra-
ditionally, this goal has been achieved using models written in Fortran and parallelized using Message
Passing Interface (MPI). This project is an investigation of a variety of techniques for parallelizing La-
grangian particle-tracking models, including using MPI, OpenMP, and graphics processing units (GPUs).
This report summarizes the implementation of each parallelization strategy, compares the performance
of each implementation, and concludes with suggestions for further development that could be done on
this model.

1 Introduction

Transport of propagules in the ocean and atmosphere by currents and wind drives a variety of biotic
and abiotic processes. Marine population connectivity, or the movement of individuals among the geo-
graphically separated subpopulations that compose a metapopulation, is driven by larval dispersal for
many species and is a key determinant of population dynamics [9]. Plant seeds are often carried by
the wind and control landscape structure [9]. In the event of disasters, understanding the transport of
contaminants such as oil is crucial to damage assessment and the design of cleanup efforts [7]. Coupling
high resolutions flow fields to Lagrangian particle-tracking models offers a potential avenue for exploring
each of the above processes along with many others.

Particle-tracking models, which may be alternatively referred to as agent-based or individual-based
models, are a computational technique to predict the likely dispersal patterns of propagules in the
atmosphere and ocean. By integrating the trajectory of many particles, the models are able to capture
the distribution of transport patterns. The Lagrangian attribute of their title reflects that the coordinate
system of each particle is local, and moves in time and space with the particle. In contrast to advection-
diffusion models that invoke the continuum hypothesis, individual-based models retain the stochastic
nature of each particle. They provide an intuitive framework for incorporating growth rates, mortality,
or directed movement of each particle in response to the particle’s local environment, e.g. [6,/14]. In
exchange for this focus on the individual, particle-tracking models have greater difficulty capturing the
tails of the dispersal distribution than do advection-diffusion models [19].

By simulating a sufficiently large number of particles, the distribution of potential dispersal pathways
may be captured to a level of accuracy that is appropriate to answer the research question. The number
of particles required varies by the question being asked and system being studied, but can often number
in the tens of millions or more including calibration runs e.g. [20]. Simulating this number of particles
requires thousands of processor hours with highly efficient and scalable models. Reducing the runtime of
particle-tracking models by a small amount can result in substantial savings on computational resources,
or present the opportunity to operate more sophisticated models with the same resource requirements.
Traditionally, the requirement for speed and efficiency has been interpreted as a mandate to use Fortran
and Message Passing Interface (MPI), e.g. [15|. Recent advances in compiler technology and hardware
architecture offer alternative strategies for parallelization that I investigate as part of this project.

Open Multi-Processing (OpenMP) is a specification for a shared memory, multi-threaded approach
to high performance computing that is particularly well suited to the incremental parallelization of
serial software. Through the addition of preprocessor directives, the programmer can specify that the
compiler should spawn a number of threads and split the work of a particular operation across them. For

example, adding the directive #pragma omp parallel for prior to a for loop in C or C++ instructs the
compiler to divide the iterations of the for loop across threads. The programmer retains responsibility
for ensuring that no iteration of the loop is reliant on data produced during other iterations, but is
relieved from explicitly creating and destroying threads. The number of threads used is determined at
runtime, and usually defaults to the number of CPU cores. If race conditions exist, they may also be
noted by designating specific regions as critical or operations as atomic. Because the compiler adds
the platform specific operations to spawn and destroy threads and most compilers support OpenMP
on the major operating systems, adding OpenMP retains cross platform compatibility that may be lost
with platform specific multithreading libraries. The directives may be added to serial programs without
otherwise altering the code, so OpenMP is an ideal candidate for incrementally parallelizing existing
serial programs. However, OpenMP is a multithreading specification, and so memory is shared across all
threads. Due to the cost of large, shared memory systems, this limits OpenMP parallelized programs to
small to moderately sized problems.

An alternative to OpenMP for distributed memory parallelization is MPI. Whereas OpenMP may
be used to parallelize portions of a program, MPI requires the entire program to be parallelized. For
software that is already written to operate serially, this requirement can lead to substantial effort and
major changes. At minimum, an MPI program must call MPI_Init () to create a set of processes and
MPI_Finalize() to destroy them. The MPI specification includes a set of subroutines for sending data
among the processes that are running within the MPI parallel environment. When calling mpirun to
create the parallel environment, the user can set the number of processes with the flag -np. Because MPI
uses multiple processes and distributed memory, it may be run on arbitrarily large numbers of nodes,
making it suitable for use on the largest supercomputers. As with OpenMP, implementations of MPI
exist for the major operating systems.

The computational requirements of real-time rendering of 3D graphics in computer games led to the
creation of an alternative form of massive parallelism, the Graphics Processing Unit (GPU). Instead
of improving performance by increasing the clock speed of the CPU, GPUs put many slower cores on
a single chip. Although each GPU core runs slower the CPU cores, the combination of hundreds of
them provides solid performance for repeatedly performing the same task on many independent pieces
of data. The GPU is an entirely separate unit from the CPU and uses a different address space, so
GPUs are often more limited in memory availability. For example, whereas the CPU on my test platform
has 16GB of memory, the GPU has only 1GB. In addition, the GPU does not have direct access to
files. APIs such as NVIDIA’s proprietary Compute Unified Device Architecture (CUDA) or the industry
standard Open Computing Language (OpenCL) provide subroutines to move data between the CPU
and GPU and to start kernels on the GPU. GPUs have been successfully used for scientific problems
including hydrodynamic simulation using finite differencing [12|, smoothed particle hydrodynamics [g],
and computation of finite time Lyapunov elements [5].

The objective of this project is to develop insight into promising parallelization strategies for La-
grangian particle-tracking models. I developed a small Lagrangian particle-tracking model that captures
the overall components of larger models actively used in research and implemented OpenMP, MPI, and
CUDA parallelization in it. In addition, I included a multiprocessing approach that manually forks
worker processes and uses shared memory regions for communication among the workers.

2 Nemo

The practice of Lagrangian particle-tracking modeling can be broadly divided into 3 broad stages (Fig 1,
left). Initially, a hydrodynamic model is calibrated with empirical observations to simulate the currents
in a region of interest. Some examples of models that may be used include the Regional Ocean Modeling
System (ROMS) [16,/17], Finite Volume Community Ocean Model (FVCOM) |4], or HYbrid Coordinate
Ocean Model (HYCOM) [3]|. The choice of hydrodynamic model and procedures to calibrate them are
beyond the scope of this project; it is sufficient to know that these models produce high resolution flow
fields. The smallest processes that can be resolved by these flow fields are limited by the mesh size of
the hydrodynamic model. When diffusive processes are relevant to the hypothesis being tested, they
may be simulated through the addition of a stochastic component. There is little consensus regarding
the parameterization of the diffusion term in particle-tracking models and it is sometimes modeled as a
linear function of mesh size [13]. The Lagrangian particle-tracking model integrates the trajectories over
time including advection by the simulated currents, subgrid scale diffusion, and particle behavior. Some
examples of particle behavior may include ontogenetic migration or natal homing of marine larvae [1418].
Finally, postprocessing and analysis relates the particle trajectories back to original hypothesis being

Physical Model

Biological Model

/Numericallv solve some form of
the conservation laws.

Fortran / MPI models:
; ROMS

HYCOM
FvCOM
']

Postprocess the data to extract
information.

Python, R, MATLAB, Fortran, C,
Julia, etc.

A

(*
Optionally add subgrid scale
processes as a stochastic

Integrate larval trajectories,
including growth, behavior,

Particle

Tracking Model

Particle

_ Cont[oller ’

Grid Controller

n+f+|

component. ete. Particles Grid Grid
> v
Figure 1: Left: An overview of the process of biophysical modeling of oceanographic systems. Right: An

overview of the major classes in Nemo and their relationships with one another.

tested. The computationally intensive tasks are often performed in compiled Fortran or C code, and
the production of visualizations in scripting languages such as Python, R, or MATLAB. The advent of
just-in-time compiled languages such as Julia or the PyPy implementation of Python may present the
opportunity to postprocess and analyze the data in a single dynamic programming language |1}2].

Nemo is the model that I developed for the purposes of testing each method of parallelization and
implements the second stage of biophysical modeling: integrating particle trajectories. It is written in
C++ using an object oriented design (Fig 1, right). The integration of particle trajectories and inclusion
of biological processes falls under the purview of the particle controller (ParticleCtl) class. Reading the
archived forcing fields and interpolating them in time and space to the particle locations is handled by the
grid controller (GridCtl) class. The particle tracking model (PTM) itself retains ownership of the one or
more ParticleCtls and GridCtls and ensures that they are properly configured and able to communicate
with one another. In the serial version, this communication is achieved by passing each ParticleCtl a
pointer to a GridCtl instance and allowing it to call the GridCtl’s public methods. The communication
methods used for the parallel models are described below.

The main routine for all versions of Nemo begins with the creation of a PTM. The PTM reads the
JSON configuration file and creates the particle and grid controllers. The constructor for each grid or
particle controller accepts a Boost PropertyTree as read from the configuration file and a mechanism
for communicating with other workers that is specific to the parallelization technique. Each particle
controller allocates memory for the particles under its control, and each grid controller initializes the
grids that it controls. The grids are ranked heirarchically within each grid controller, so it is possible to
nest local higher resolution grids within lower resolution regional or global grids. The PTM then calls
the run method on each particle controller and is responsible for deleting the grid controllers when the
run is complete.

The numerical methods used in Nemo are acceptable for the purposes of testing runtime performance,
but not sufficient for use in practice. The integration uses a first order Euler method, which is inadequate
for oceanographic research. Second and fourth order Runge-Kutta methods have been implemented for
the serial version of the model, but not yet tested on the parallel versions. The forcing fields are linearly
interpolated in time and space. Ideally the spatial interpolation would be done with a bicubic method.
Diffusion is not yet implemented. Despite these limitations to the use of Nemo for particle-tracking, it
is still sufficient for testing the performance of various parallelization strategies.

2.1 OpenMP parallelization

The OpenMP parallelization required the fewest modifications to Nemo. With the addition of three
lines of code, I parallelized the temporal and spatial interpolation and the particle integration. Because
the NetCDF libraries used for IO operations are not thread safe, this process represents the changes
that would likely be made as a first attempt to incrementally parallelize an existing serial model. This
parallelization required the addition of two #pragma omp parallel for directives.

In the initial version of Nemo, the data accessor methods in the Grid class accepted a request time
and automatically read in the data from disk or interpolated between timesteps if necessary. Because
there is a single slot for storing the current timestep in the Grid class, this design creates a race condition.
One thread may request data at timestep ¢t. After the data at timestep t has been loaded, but before
the Grid has completed the time consuming process of temporally interpolating each velocity, a second
thread may request data at the previously loaded timestep to. If the second thread’s request is fulfilled
before the first thread updates the Grid to note that time ¢ was loaded, then the second thread will
be given data from ¢ believing that it is from ¢o. Alternatively, the first thread could first update the
current time to ¢, then temporally interpolate, but that strategy would just reverse the race condition
so that the first thread gets the wrong data and potentially result in corrupted results from calls to the
NetCDF libraries. One potential solution would be to mark the temporal interpolation region as critical
and allow only 1 thread to enter it at a time. Although this solution removes the race condition, it
precludes the possibility of parallel temporal interpolation, because all but one thread would block while
a single thread performed the interpolation of all elements in serial. Another potential solution would be
to load single grid elements only when needed instead of the entire mesh, but this is inefficient for large
number of particles because there are likely to be many particles within a single element. The solution I
chose was for the particle controller was to first request that the grid controller load the data at a specific
point in time from the main thread, then integrate all the particles for that timestep in parallel.

2.2 MPI parallelization

The MPI parallelization required more substantial modifications to the PTM, ParticleCtl, and GridCtl
classes, but did not require modification to the Grid or Particle classes. Instead of the main routine first
creating a PTM instance, the MPI version first calls MPI_Init. Node number 0 then creates a PTM class
that reads the configuration file and initializes the model, and all other nodes call the blocking subroutine
MPI_Recv. The master node sends 3 pieces of information for each worker node. First, a single integer
that tells the worker to either become a grid controller or a particle controller. Second, the size of the
configuration data for the worker node. Third, a JSON string with the worker node configuration. For
the particle controllers, it also sends the node number for a grid controller where the particle controller
can send forcing requests, evenly dividing the particle controllers across grid controllers. Each grid
controller immediately enters an infinite loop of waiting for requests and sending the results back to the
requesting node, and each particle controller immediately begins to integrate the particle trajectories.
Upon completion, the particle controllers notify the master node, which then sends a request to the grid
controllers that causes them to terminate.

2.3 CUDA parallelization

To run Nemo on a GPU, I used NVIDIA’s CUDA functions and compiler. The choice to use CUDA
instead of the cross platform OpenCL was motivated in part because the test platform has a NVIDIA GPU
and in part because it supports double precision arithmetic. The CUDA version of Nemo is operationally
very similar to the serial version, but required additional pointer arithmetic and memory allocation to
smoothly move data between the hard disk, main memory, and GPU memory. During each timestep,
the CPU configures the pointers in the Grid and ParticleVector classes to point to device memory, copies
them to the device, then launches a kernel perform the spatial interpolation and particle movement. The
new particle locations are copied back to the CPU and written to disk. This process involves an excessive
amount of data copying and only uses global memory in the device, both of which could be improved in
future versions.

In order for the Grid and ParticleVector to interface properly on the GPU, the ParticleVector was
given a pointer to the Grid and allowed to access it directly instead of through its controller. Also,
each class instance is serialized prior to moving it to the device and after recovering it from the device.
The serialization process happens in two steps. The first step is to allocate a single contiguous block of
memory for the class and copy the class itself and all dynamically allocated members to this block. The
second step is to update the pointers that used to reference dynamically allocated memory to instead
be offsets to the start of the block. Because this second step does not involve accessing the memory
locations referenced, it does not matter whether the reference location is the actual location of the class,
or its future location when copied to the device. The process of serializing the memory happens only
once before the first timestep, but serializing the pointers happens any time an instance is copied to or
from the device.

Speed

Distance from center

Figure 2: The velocity magnitude of a Rankine vortex along a radial transect. Within the radius R, the
velocity increases linearly with radius. Outside of R, the velocity magnitude decays with radius.

2.4 Lower level parallelization

One additional well intentioned, but ill informed, attempt at parallelization was also implemented. This
version of Nemo was operationally identical to the MPI version, but used fork system calls to spawn new
processes and shared memory regions to communicate among workers. Communication with the master
node relied on POSIX signals. Although I included this version in the performance tests, I found that it
did not contribute any benefits not already present in other versions and am in the process of removing
it now. Because this version used fork calls to create new process, I refer to it as the fork version.

3 Test framework

The performance testing took place on an analytic flow field. The Rankine vortex is an idealized model
of an eddy that is characterized by 2 parameters. Within a radius R, the eddy demonstrates solid body
rotation. Outside of R, the velocity magnitude decays. The absolute speed of the eddy rotation is
defined by the circulation I'. In addition to the rotational aspect described by (1), I included a horizontal
translation along the positive x axis at rate k. The test grid was configured to simulate a 300km diameter
eddy with 0.25m/s flow 150km from the center and moved horizontally at 0.1m/s as may be expected
for a western boundary current eddy [10]. The grid spanned 1000km by 500km and hourly output was
written for 60 days. One particle was released from and the velocity vectors were written at each point
on a low resolution 4km and high resolution 1.5km lattice grid.
2
wo(r) = {?r/(ZwR) r<R, O
/(27r) r > R.

The first set of tests sought to compare the performance of each parallel method. Each version of
Nemo was compiled using the optimization levels -O0, -O1, -02, -O3, and -O4. Each model was 3 times,
using the 4km grid to simulate the particles for 15 days with an hourly timestep. The fastest version
of each model was chosen and an additional 7 tests were run, for a total of 10 runs with each of the
fastest versions. The results were then standardized against the median runtime of the serial version.
During these tests, the MPI and low level parallelizations were limited to 1 grid controller and 1 particle
controller, so they would be expected to operate more slowly than the serial version due to the overhead of
interprocess communication. In the second set of tests, I profiled each version of the model to determine
where the runtime was being spent. Each method was classified as an IO operation, associated with
physical forcing, related to the particle integration, or a communication routine. A mosaic plot captures
the proportion of time that each version of the model spent in each category using the 1.5km grid.
Finally, I tested the scalability of the MPI version of the model by running it with 1, 2, 4, and 8 particle
controllers and 1, 2, 4, and 8 grid controllers.

All of the tests were run on a mid 2012 Retina Macbook Pro running OS X 10.8.5. The test platform
has an 2.3 GHz Intel Core i7 with 4 physical cores and 2 threads per core. It has an NVIDIA GeForce GT
650M graphics chipset with 384 900MHz cores. The main memory consists of 16GB of 1600MHz memory

Serial fork()
. == P
r800
1600
r400
. r200
7 L
'g °
] A * * *
2 0
% CUDA MPI OpenMP
£
<
=}
o goo P
600
400
200+
I
Q@ —® —¢ ——0 ——o — hd *~—— ————8———8—

00 01 02 03 04 OO0 O1 02 03 04 o0 O1 02 03 04
Optimization Level

Figure 3: Three runs were conducted with each optimization level and model version. The results of those
test are depicted here.

and the GPU has 1024MB of VRAM. No effort was made to optimize the code for this architecture. The
compiler used was GCC 4.2, Apple LLVM version 5.0 with OpenMPI version 1.7.3, or NVIDIA nvcc
V5.5.0. All tests were conducted with single precision operations due to limitations of the GPU. All
of the tests were conducted using commit number 1950fb39e6e41598a1f126c79869877e55¢10600 on the
master branch of the git repository at https://github.com/btjones16/nemo.

4 Test Results

The first round of testing showed very similar performance across all runs for the CUDA, MPI, and serial
versions, and vastly differing performance between runs for the OpenMP and fork versions. Splitting the
results along both the version and optimization level, it becomes apparent that these differences arise
because the -02, -03, and -O4 optimized fork models are slow, and the -O0 and -O1 OpenMP models are
slow (Fig 3). Comparing only the fastest optimization levels, the OpenMP parallelization on 8 threads is
approximately twice as fast as the serial version and the CUDA version just over 3x faster (Fig 4). The
MPI version incurs a 7% overhead for communication, and the fork version is nearly 5 times slower.

In the serial version, IO operations consume 92% of the runtime. Under the CUDA and OpenMP
versions, this proportion is vastly decreased, and the process of locating particles on the grid and in-
terpolating velocity vectors becomes the dominant process. This does not necessarily mean that the 10
operations took less time since the IO operations were not parallelized but the other methods were. The
MPI and fork methods spent 87% and 77% of their runtime in communication related methods and the
vast majority of that time was spent in spin conditions. However, this result is largely an artifact of
limiting the test cases to a single grid controller and a single particle controller. Each of these processes
is blocked in a MPI_Recv call while the other is running, and the master process is blocked throughout the
duration of the run. A better estimate of the communication overhead for MPI process is the 7% from

https://github.com/btjones16/nemo

483%

128

64

107%

Runtime (seconds)

32

100%
—_— e

16

50%

30%

CUDA MPI OpenMP Serial fork()
Model class

Figure 4: Left: The runtime of all versions and all optimization levels of Nemo. Right: The runtime for the
10 tests conducted with the fastest optimization level for each model.

the timing results displayed in Figure 4. Excluding communication time, all 4 parallel versions spent the
most time processing physical data.

Running the MPI version with multiple particle controllers and multiple grid controllers revealed that
the ideal configuration for this grid size and number of particles is 1 grid controller per particle controller.
With higher numbers of particle controllers, it is not a poor choice to have 2 particle controllers per grid
controller. Even though additional grid controllers are not assigned particle controllers and sit idle for
the duration of the run, have an excess of grid controllers causes slowdowns in performance. For example,
running 1 particle controller with 1 useful and 7 idle grid controllers wastes system resources and takes
over twice as long as a single grid controller. The balance between the number of grid and particle
controllers is highly dependent on the number of particles and grid size and would ideally be dynamically
balanced during the model run.

5 Discussion

The development and implementation of Nemo highlighted a number of considerations that go into
parallel programming. I ran into stumbling blocks concerning the choice of language, overall design of
Nemo, and choice of libraries.

I had initially written Nemo in Python, but rapidly encountered stumbling blocks that convinced me
to switch to C++. The global interpreter lock in CPython restricts the possibilities for multi-threaded
programming because only 1 byte code instruction can be executed at a time. This limitation, and
that the initial tests were approximately 3 orders of magnitude too slow, convinced me to switch to a
compiled language. Fortunately, or perhaps unfortunately, this stumbling block occurred early in the
semester, allowing me sufficient time to rewrite the model in C++, but also before we had completed
any assignments with Julia. The model loops over the same few lines of code millions of times or more,
so the overhead associated with compiling the model on the fly would be minimal relative to the overall
runtime. Revisiting the choice of language, it would interesting to explore the possibility of using Julia
to write high performance scientific models.

The first parallel version of Nemo was a multiprocessing version with a more strict object oriented
design. There was a Particle class, and each timestep iterated through all of the particles, obtaining the
forcing data and advancing the particle prior to moving on to the next particle. In the parallel version,
this strategy resulted in 2 context switches per particle per timestep. Although a single context switch

Model Type

Serial CUDA OpenMP MPI fork()

c

8

o 10

()

=%

O
Forcing
Integration

Communication

Figure 5: Each method was classified into one of 4 categories. The size of each box corresponds to the
proportion of profiling samples that were in each category. Sampling occurred across all cores, processes,
and threads, so parallel versions may have more samples in a particular category even if the wall clock time
was lower.

o
S .
“ INumber of Grid Controllers
— 1
— D
— 4
87 — 8
o~
o
g
m
©
C
[o]
(&}
[0}
L
Qo
£ —
k=
]
14
R
o
g
onfe—
n——
o | S
n —
— —
nfe—
1 8

2 4
Number of Particle Controllers

Figure 6: Timing for each of the MPI runs. Each particle controller was configured identically, so the runs
with 2, 4, and 8 particle controllers simulated 2, 4, 8 times the number of particles.

may take only a few microseconds |11, only a few operations were performed between switches and the
time spent switching dwarfed that spent doing useful work. By instead grouping the particles into a
ParticleVector class that all requested forcing data together, then all moved together, it was possible to
reduce the cost of context switching to a negligible amount. Although I have no evidence to support
this, my working hypothesis for the slowdown in the fork version of the model when using -O2 or above
optimization is that it is related to the context switching issue. If the compiler attempts to optimize
caching by requesting data and moving each particle before advancing to the next particle, then the extra
context switches could potentially lead to long runtimes. Since the compiler would not be aware that the
grid controller and particle controller run in separate processes, it may not account for the interprocess
communication in optimizing the code.

The choice of communication method in the fork version of the model also resulted in a substantial
slowdown. The shared memory communication method used is a Interprocess Message Queue from the
Boost libraries, which is a priority queue. Although the priority mechanism is not used by Nemo and
all particles are coded with priority 0, the process of inserting new members into the queue may result
in performance penalties. This problem could be alleviated with the use of a circular buffer in shared
memory instead.

The next step in developing Nemo into a research is to refine the numerical methods and increase
the stability. The spatial interpolation should use a bicubic or tricubic method, and integration should
use a higher order method such as 4th order Runge-Kutta. Since the test model was run in a controlled
environment and the size of the problem relative to the system resources was known in advance, none of
the error codes returned by malloc or NetCDF library calls were checked, but they should be in practice.

Since all of the parallel versions spent more time processing the physical data than integrating the
particle trajectories, that would be my first objective for optimization. In addition, the amount of data
transmitted between MPI nodes and copied from the host to device in the CUDA version can be vastly
reduced. The MPI workers transmit a structure with x, y, u, and v both to the grid controller and back
to the particle controller, but only x and y need to be transmitted to the grid controller and only u and
v back. In the GPU version, the entire grid and set of particles is copied to and from the device every
timestep. Using a small internal timestep and writing the particles to disk only every few timesteps could
reduce the amount of particle data copied. Moving the temporal interpolation to the grid would reduce
the amount of grid data copied and speed up the interpolation. Also, better use of shared and thread
specific memory on the GPU may speed up the computations

At this point, Nemo is an interesting toy Lagrangian particle-tracking model that has taught me a
great deal about the caveats of parallel computing, but a fair amount of additional work is required
before it will be ready for use in oceanographic research.

References

[1] Davide Ancona, Massimo Anacona, Antonio Cuni, and Nicholas D Matsakis. RPython: a step
towards reconciling dynamically and statically typed oo languages. In Proceedings of the 2007
Symposium on Dynamic Languages, 2007.

[2] Jeff Bezanson, Stefan Karpinski, Viral B Shah, and Alan Edelman. Julia: a fast dynamic language
for technical computing. CoRR, abs/1209.5:1-27, 2012.

[3] Rainer Bleck. An oceanic general circulation model framed in hybrid isopycnic-Cartesian coordi-
nates. Ocean Modelling, 37:55-88, 2002.

[4] Changsheng Chen, Robert C Beardsley, and Geoffrey Cowles. An unstructured-grid finite-volume
coastal ocean model (FVCOM) system. Oceanography, 19(1):78-89, 2006.

[5] Christian Conti, Diego Rossinelli, and Petros Koumoutsakos. GPU and APU computations of Finite
Time Lyapunov Exponent fields. Journal of Computational Physics, 231(5):2229-2244, 2012.

[6] R. K. Cowen. Connectivity of Marine Populations: Open or Closed? Science, 287(5454):857-859,
February 2000.

[7] J.C. Dietrich, C.J. Trahan, M.T. Howard, J.G. Fleming, R.J. Weaver, S. Tanaka, L. Yu, R.a.
Luettich, C.N. Dawson, J.J. Westerink, G. Wells, a. Lu, K. Vega, a. Kubach, K.M. Dresback, R.L.
Kolar, C. Kaiser, and R.R. Twilley. Surface trajectories of oil transport along the Northern Coastline
of the Gulf of Mexico. Continental Shelf Research, 41:17-47, June 2012.

[8] Alexis Hérault, Guiseppe Bilotta, and Robert A Dalrymple. SPH on GPU with CUDA. Journal of
Hydraulic Research, 48:74-79, 2010.

10

9]

[10]

[11]
[12]

[13]
[14]

[15]

[16]

[17]

18]

[19]

[20]

Brian P Kinlan and Steven D Gaines. Propagule dispersal in marine and terrestrial environments:
a community perspective. FEcology, 84(8):2007-2020, August 2003.

I-Huan Lee, Dong Shan Ko, Yu-Huai Wang, Luca Centurioni, and Dong-Ping Wang. The mesoscale
eddies and Kuroshio transport in the western North Pacific east of Taiwan from 8-year (2003-2010)
model reanalysis. Ocean Dynamics, 63(9-10):1027-1040, July 2013.

Chuanpeng Li, Chen Ding, and Kai Shen. Quantifying the cost of context switch. In Proceedings of
the 2007 workshop on experimental computer science, number June, pages 13-14, 2007.

Jason Mak, Paul Choboter, and Chris Lupo. Numerical Ocean Modeling and Simulation with
CUDA. In Proceedings of OCEANS, 2011.

Akira Okubo. Oceanic diffusion diagrams. Deep Sea Research, 18(152):789-802, 1971.

Claire B Paris, LM Chérubin, and Robert K Cowen. Surfing, spinning, or diving from reef to reef:
effects on population connectivity. Marine Ecology Progress Series, 347:285-300, October 2007.

Claire B Paris, Judith Helgers, Erik van Sebille, and Ashwanth Srinivasan. Connectivity Modeling
System: A probabilistic modeling tool for the multi-scale tracking of biotic and abiotic variability
in the ocean. Environmental Modelling & Software, 42:47-54, April 2013.

Alexander F. Shchepetkin. A method for computing horizontal pressure-gradient force in an oceanic
model with a nonaligned vertical coordinate. Journal of Geophysical Research, 108(C3):3090, 2003.

Alexander F. Shchepetkin and James C. McWilliams. The regional oceanic modeling system
(ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Mod-
elling, 9(4):347-404, January 2005.

Erica Staaterman, Claire B Paris, and Judith Helgers. Orientation behavior in fish larvae: a missing
piece to Hjort’s critical period hypothesis. Journal of Theoretical Biology, 304:188-96, July 2012.

Eric A Treml, Jason J Roberts, Yi Chao, Patrick N Halpin, Hugh P Possingham, and Cynthia
Riginos. Reproductive output and duration of the pelagic larval stage determine seascape-wide
connectivity of marine populations. Integrative and Comparative Biology, 52(4):525-537, 2012.

James R Watson, Bruce E Kendall, David A Siegel, and Satoshi Mitarai. Changing seascapes,
stochastic connectivity, and marine metapopulation dynamics. The American Naturalist, 180(1):99—
112, 2012.

11

	Introduction
	Nemo
	OpenMP parallelization
	MPI parallelization
	CUDA parallelization
	Lower level parallelization

	Test framework
	Test Results
	Discussion

