
PARALLEL IRRADIANCE CACHING ON THE GPU

Nathaniel L. Jones

Massachusetts Institute of Technology, Cambridge, Massachusetts, USA

18.337/6.338 Parallel Computing

Final Report

December 16, 2013

ABSTRACT

While ray tracing is highly parallelizable in concept,

the Radiance suite of programs for architectural global

illumination simulation was written for serial execution

and makes use of certain heuristic techniques that are

not easily performed in parallel environments. It uses

irradiance caching to store and reuse the results of

expensive indirect irradiation computations. The

irradiance cache has unpredictable size, and Radiance

alternately reads and adds to it during a simulation,

making it unfriendly to parallelization.

The irradiance caching method proposed in this paper

uses the OptiX™ engine for GPU ray tracing.

Irradiance records are stored in buffers in GPU

memory which can as necessary be used to create a

bounding volume hierarchy (BVH) of known

irradiance values based on their valid ranges. Queries

into the irradiance cache are performed by casting a

short ray into the BVH. Because the CPU maintains a

handle to the irradiance cache, it is possible to read

irradiance records from a file prior to simulation and

write them back afterward. Therefore, this proposed

method maintains consistency with the expected use

and output of Radiance while performing calculations

at higher speeds.

INTRODUCTION

Lighting of interior spaces is an important yet poorly

understood component of architecture. While many

countries have standards for acceptable indoor

illumination levels, few people have the ability to

accurately and quantitatively gage, let alone predict,

illuminance levels. Because building designers must

meet indoor illuminance criteria while balancing the

desire for daylight with the problems of heat loss

through windows and productivity loss caused by

glare, physically-based global illuminance simulation

is needed during building design.

The Radiance suite of programs (Larson and

Shakespeare, 1998) has become the gold standard for

global illumination calculation used by architects and

lighting designers. This can be attributed to Radiance’s

flexibility, open source availability, and extensive

validation through comparison to physical

measurements (see Ochoa et al. (2012) for list of

references). Radiance is used as a simulation engine by

widely-used building performance simulation tools

such as IES<VE>, Ecotect®, OpenStudio, DAYSIM,

and DIVA for Rhino. However, Radiance simulations

tend to be slow, especially in scenes with complex

geometry. As a result, global illumination simulation

using Radiance tends to take place late in the design

process, after most design decisions are made, or else

simplified models are used for simulation that may not

accurately predict conditions in the physical building.

Faster simulations are necessary in order to better

predict and design interior lighting.

In this paper, we propose a solution to speed up

Radiance calculations by tracing multiple primary rays

in parallel on a graphics processing unit (GPU). First,

we briefly describe a framework built on Nvidia®’s

OptiX™ ray tracing engine that allows our port of the

Radiance source code to run on the GPU. Next, we

introduce irradiance caching as a method commonly

used in Radiance to speed up serial calculations and

describe our method for reading an irradiance cache

(IC) on the GPU by mapping it to a bounding volume

hierarchy (BVH). Then, we describe how create and

adaptively vary the size of an IC on the GPU using a

two-stage method. Finally, we propose a multi-stage

method that promises to produce more accurate

irradiance values by tracing more ray reflections

without an exponential increase in the number of rays

cast.

BACKGROUND

Backward Ray Tracing

The Radiance package includes a number of executable

programs built around a bespoke backward ray tracing

engine. In backward ray tracing, primary rays are

emitted by from an origin point (a virtual camera or

illuminance sensor) to sample the environment.

Wherever a ray intersects a surface, it recursively

spawns one or more new rays, depending on the

surface material, and gathers their results into a single

value that is returned as the parent ray’s result (Figure

1). Typically, a small number of spawned rays are

required for direct and specular reflections, and a much

larger number of rays are spawned to sample the

indirect irradiance due to ambient lighting at the

intersection point. In Radiance, each ray returns red,

green, and blue values with units of radiance

(W•sr−1•m−2). The array of values returned from the

primary rays can be displayed as an image; however,

because the range of returned values typically varies by

several orders of magnitude, these images are more

easily interpreted using false colors (Figure 2).

Additionally, each ray carries with it a weight

corresponding to the maximum contribution it may

make to its parent ray’s value. Rays weighted below a

minimum threshold may be terminated without

spawning new rays in order to prevent exponential

growth in the number of rays traced by the simulation.

Figure 1 In backward ray tracing, each primary ray

traverses an acceleration structure of scene geometry

until it intersects a surface. The intersection usually

spawns additional rays.

Irradiance Caching

The number of rays to traverse can be further reduced

by caching and reusing indirect irradiance values.

While direct and specular reflections change abruptly

over spatial dimensions, ambient lighting due to

indirect irradiance is less variable, so a single value

may be applied to all ray intersections within a

calculated radius of the point where it was measured.

For instance, given two cached irradiance values at

points E1 and E2 in Figure 3, the irradiance at point A

may be found by interpolation, and the irradiance at

point B may be found by extrapolation. Only when a

ray intersection is not contained within the validity

radius of any IC record (such as at point C) must a new

record be calculated and added to the IC. This strategy

reduces overall ray tracing time by an order of

magnitude (Larson and Shakespeare, 1998), but it also

eliminates the possibility of straightforward

parallelization of the Radiance source code because the

final value of each ray depends on the IC records

created by previous rays (Figure 4).

Figure 3 IC records may be applied to all points within

valid radii (Larson and Shakespeare, 1998).

E2

E1

A

B

C

Figure 2 Radiance image tone-mapped with false colors (left) and low dynamic range photorealistic colors (right).

Figure 4 In single-threaded ray tracing, the program

may alternately write to and read from the IC.

Various methods have been proposed for creating an

IC using parallel threads. On CPU clusters, most

strategies involve occasional synchronization of

separate local ICs for each thread. This may

occasionally result in duplicate IC records created

simultaneously by more than one CPU. On UNIX

systems, multiple instances of Radiance may share a

single irradiance cache using network file locks

(Larson and Shakespeare, 1998). Synchronization can

also be performed using MPI (Koholka et al., 1999;

Debattista et al., 2006). Dubla et al. (2009) propose a

multi-threaded approach that allows wait-free

synchronization of local ICs.

Using GPUs, others have implemented IC creation as a

pre-process carried out prior to ray tracing-based image

creation. Generally, these approaches are geared

toward creation of visually plausible images rather that

attempting to achieve physical accuracy. Wang et al.

(2009) use photon mapping and k-means clustering to

select points in the scene for use as seeds for IC

records. Křivánek and Gautron (2009) use splatting to

store irradiance values in a two-dimensional cache that

may be projected onto the scene from the camera’s

vantage point. Using pure ray tracing, Frolov et al.

(2012) create an irradiance cache in 20-30 passes,

where each pass involves both addition of IC entries

visible to the camera and elsewhere in the scene for

secondary rays.

Ray Tracing on the GPU

While GPUs are primarily designed for raster

rendering, the development of GPU-based ray tracers

has closely paralleled the development of

programmable GPU raster pipelines. As early as 2002,

the GPU was used for geometry traversal, ray

intersection testing, and ray result shading (Purcell et

al., 2002). Dietrich et al. (2003) developed a ray

tracing library, OpenRT, that imitates OpenGL® in

structure, including programmable shaders to execute

at ray intersections; however, their specification was

not widely implemented by hardware manufacturers.

Eventually, general purpose GPU (GPGPU) language

extensions such as Nvidia®’s Compute Unified Device

Architecture (CUDA™) made it possible to implement

all components of a ray tracing engine on GPU shader

processors (Aila and Laine, 2009; Wang et al., 2009).

In 2010, Nvidia® released the OptiX™ ray tracing

engine, which uses CUDA™ to perform both ray

traversal and shading on the GPU (Parker et al., 2010).

The OptiX™ library is intended to be easily inserted

into existing CPU-based code to replace a serial ray

tracing engine. OptiX™ provides built-in BVH

creation and ray traversal algorithms to detect ray-

surface intersections. The programmer is required to

re-implement ray generation, intersection testing,

closest hit, any hit, and miss algorithms as CUDA™

programs. OptiX™ compiles these programs into

virtual machine code to be further optimized by a just-

in-time compiler to create device-specific instructions

at runtime.

PARALLEL RAY TRACING WITHOUT

IRRADIANCE CACHING

When the IC is disabled, Radiance’s backward ray

tracing algorithm is “embarrassingly parallel,” and

aside from the task of porting the C code to CUDA™,

its parallelization is trivial (Figure 1). After the scene

geometry is created and used to generate the BVH

acceleration structure for ray traversal, a thread is

created on the GPU for each primary ray, and all rays

spawned by the primary ray or its descendants are

traversed on that thread.

Conceptually, it is easy to think of all primary rays as

being traversed simultaneously, but in reality, this is

not the case. The tests we present were carried out on a

workstation equipped with a 3.4 GHz Intel® Core™

i7-4770 processor and an Nvidia® Quadro® k4000

graphics card. While the images we show are each 512

× 512 pixels (that is, 262,144 primary rays), the GPU

has only 768 CUDA™ cores. OptiX™ groups threads

into warps of 32, so the GPU can process at most 24

warps simultaneously, while images of that size are

divided into 8192 warps of adjacent rays. As a result,

simulation time with OptiX™ generally varies linearly

with the number of primary rays, despite the fact that

primary rays are traced in parallel.

Save to
Cache

Read
Cache

Traverse IntersectPrimary Ray Traverse Intersect Spawn Ray

Traverse IntersectSpawn Ray

Traverse IntersectSpawn Ray

Traverse IntersectPrimary Ray Traverse Intersect Spawn Ray

Traverse IntersectPrimary Ray Traverse Intersect Spawn Ray

Acceleration
Structure

Save to
Cache

Read
Cache

Read
Cache

Save to
Cache

The values obtained from our OptiX™ implementation

closely match those from Radiance without an IC

(Figure 5). Furthermore, the OptiX™ implementation

produces results in 27.6 seconds, while Radiance

required 243 seconds with the same settings, not

including the time required to read the input file. This

represents an 8.8-fold speed improvement.

Our goal, however, is to match the image in Figure 2,

which shows higher radiance values due to its IC but

requires 4838 seconds to create in Radiance. We

theorize that the higher values occur because the

cached irradiance levels are themselves created by

summing the contributions of rays that sample other

cached values. Because the earlier created IC records

started with a higher ray weight, this has the effect of

artificially lowering the minimum ray weight

threshold. While it is not yet practical to run tests with

very low minimum ray weight thresholds1, we can test

our hypothesis on the GPU by reducing other accuracy

parameters in order to reduce simulation time. Figure 6

shows the OptiX™ kernel and total simulation times

(not including input file reading) for reduced-accuracy

1 Simulations with low minimum ray weight thresholds

can take days to run on the CPU. On the GPU, they

result in high processor loads which can cause the GPU

to become unresponsive and in turn cause Windows’

Timeout Detection and Recovery (TDR) system to

reboot the GPU, terminating any running simulation.

By default, TDR occurs after 2 seconds without

response, during which the screen appears to be frozen.

For our tests, we have set the TDR delay to 10 seconds,

which allows our GPU threads to remain active longer

at the expense of user interaction. A better solution

would be to use NVIDIA®’s Tesla® GPUs, which are

intended solely for GPGPU applications and do not

timeout.

simulations with a typical minimum ray weight

threshold of 0.002 and a low threshold of 0.0002. As

the number of bounces allowed in gathering indirect

irradiance increases, the total number of rays created

and the total simulation time are expected to increase

exponentially. However, the actual times level off

quickly, suggesting that the minimum ray weight

threshold is indeed a limiting factor. Furthermore, the

lower threshold produces an image closer to the target

than the normal threshold (Figure 7).

Figure 6 Simulation time dependence on number of

ambient bounces.

0

20

40

60

80

100

120

140

160

180

0 2 4 6

Ti
m

e
(s

ec
o

n
d

s)

Ambient Bounces

High Min. Wt. Kernel Time

High Min. Wt. Total Time

Low Min. Wt. Kernel Time

Low Min. Wt. Total Time

Figure 5 Results from our OptiX™ implementation (left) and Radiance (right) without an IC.

READING FROM AN IRRADIANCE

CACHE IN PARALLEL

Because Radiance runs on a single thread, it is trivial to

read from and write to the same IC during a simulation.

Radiance is also able to save its IC as a binary file to

later use to enable multiple simulations of the same

space. On the GPU we must read from and write to the

IC at separate times. Here, we discuss our method for

reading from the IC, using IC files created by Radiance

as input.

Each IC record represents a disc over which a given

indirect irradiance value is valid, along with directional

vectors indicating the disc’s orientation in space and

gradients in the plane of the disc. Our first step is to

enter all available IC records into a BVH acceleration

structure. While OptiX™ generates the BVH

automatically, we must specify a bounding volume for

each disc. We define an axis-aligned bounding box

(AABB) for each entry as

 𝐴𝐴𝐵𝐵 = 𝑃 ± 𝑟√1 − 𝐷2 (1)

where P is the center point of the disc, r is its radius, D

is the normal vector of the plane containing the disc,

and all operations are element-wise (Figure 8).

Because CUDA™ treats tuples as primitives, this is a

rare case in which the source code closely resembles

the mathematical expression. The AABBs of all IC

record are independent and can be computed in parallel

on the GPU, although their insertion into the BVH tree

is a serial operation. Once the BVH containing IC

values is created, our OptiX™ implementation can

determine indirect irradiance values at each

intersection by spawning a single ray into the IC BVH

acceleration structure, rather than by spawning

thousands of rays into the scene (Figure 9).

Figure 8 An axis-aligned bounding box for a disc.

Figure 9 Our OptiX™ implementation uses a single

ray at each intersection to find relevant IC records.

Read
Cache

Read
Cache

Read
Cache

Read
Cache

Read
Cache

Read
Cache

Traverse IntersectTraverse Intersect Spawn Ray

Traverse IntersectTraverse Intersect Spawn Ray

Traverse IntersectTraverse Intersect Spawn Ray

Acceleration Structure

CPU GPU

Primary Ray

Primary Ray

Primary Ray

La
u

n
ch

 C
o

n
te

xt
 (

 5
1

2
x

5
1

2
)

Cache Accel. Structure

Figure 7 Results from our OptiX™ implementation with a low minimum ray weight (left) and normal minimum ray

weight (right) using a reduced number of ambient divisions for indirect irradiance sampling.

Figure 10 shows the time required to generate the

scene from Figure 2 depending on the number of IC

entries included in the BVH. The OptiX™ kernel time

varies linearly with IC size, and the total simulation

time (not including file reading) demonstrates a

constant 3.6-second overhead. While our OptiX™

implementation requires 56.8 seconds to traverse the

full 109,998 IC entries created by Radiance in our

example scene, we note that Radiance itself is able to

produce the same result in 6 seconds given the same IC

file. (The file itself took well over an hour to create

with Radiance.) Furthermore, the vast majority of these

IC values will not be useful to final processing as they

represent intermediate steps in creating other IC values

(through multiple bounces). Clearly, a better approach

would be to adaptively vary the size of the IC and copy

only the necessary IC records to the GPU.

Figure 10 Simulation time dependence on IC size.

CREATION OF AN IRRADIANCE CACHE

IN PARALLEL

A simple approach to creating an IC on the GPU is to

generate IC records as a pre-processing step prior to

generating the image. We use a second OptiX™ kernel

for this purpose. In our ambient OptiX™ kernel, each

primary ray in our grid returns a 72-byte IC record as

its payload rather than a 12-byte RGB radiance value,

as in our first OptiX™ kernel (Figure 11). The rules for

spawning additional rays are unchanged between the

two kernels. We launch our ambient kernel on a

smaller number of threads, sending out one primary

irradiance ray and returning one IC record (or fewer

should the ray not intersect any surface) per thread.

The number of returned IC records thus varies linearly

with the number of primary rays (Figure 12). However,

total simulation time also increases with the size of the

IC produced (Figure 13). While large IC sizes result in

slow simulations, small cache sizes can leave areas of

the scene uncovered by any IC entry (Figure 14).

Figure 11 Our ambient kernel produces an IC record

at from each primary ray.

Figure 12 IC size dependence on number of primary

rays in ambient kernel.

0

10

20

30

40

50

60

0 50000 100000

Ti
m

e
(s

ec
o

n
d

s)

Irradiance Cache Entries

Kernel Time Total Time

64

128

256

512

1024

2048

4096

8192

16384

32768

65536

131072

262144

256 1024 4096 16384 65536 262144

R
et

u
rn

ed
 Ir

ra
d

ia
n

ce
 R

ec
o

rd
s

Primary Irradiance Rays

One Record per Thread

Multiple Records per Thread

Figure 13 Simulation time dependence on number of

primary rays in ambient kernel with one ray per

thread.

Our solution is to allow the number of primary rays

produced by each ambient kernel GPU thread to vary.

The ray generation program loops until it reaches a

user-defined limit, and generates a new primary ray

with each loop in a direction defined by the following

code and illustrated in Figure 15.

static __device__

float2 get_offset(unsigned int index) {

 float2 offset = make_float2(0.5f);

 float delta = 0.5f;

 for (; index > 0u; index >>= 2) {

 unsigned int x = index & 1u;

 unsigned int y = (index >> 1) & 1u;

 y = x ^ y;

 if (x) offset.x += delta;

 if (y) offset.y += delta;

 delta *= -0.5f;

 }

 return offset;

}

Because no BVH exists to search for overlapping IC

records yet, the primary ray can only test for

intersection with IC records generated on its own

thread. As a shortcut, each primary ray other than the

first is assigned as a parent IC record the closest record

previously calculated by its thread. This is the record

returned by the ray whose index is the current index

less the greatest power of two less than or equal to the

current index (Figure 16). If the parent’s disc overlaps

the new primary ray’s intersection with the scene, then

0

20

40

60

80

100

120

256 1024 4096 16384 65536 262144

Ti
m

e
(s

ec
o

n
d

s)

Primary Irradiance Rays

Ambient Kernel Time

Radiance Kernel Time

Total Time

Figure 15 Order of primary rays sent by one thread. Filled circles indicate locations of new rays at each level.

Figure 14 Results from our OptiX™ implementation with a large IC creating smoother irradiance gradients (left)

and small IC providing insufficient coverage (right).

no new IC record is generated for this ray or any of its

future closest neighbors. This dramatically lowers the

number of IC records created (Figure 12) and the

overall simulation time (Figure 17) while providing

good coverage for the scene (Figure 18).

Figure 16 Parent IC records for each primary ray are

the result of the ray whose index is the current index

minus the largest possible power of two.

Figure 17 Simulation time dependence on number of

primary rays in ambient kernel with multiple rays per

thread.

Figure 18 IC created with multiple primary rays per

thread in our OptiX™ implementation.

ITERATIVE IRRADIANCE CACHE

CREATION IN PARALLEL

We have theorized that the difference in radiance

levels between Figure 2 and Figure 5 is caused by the

presence of IC records that are created by summing

rays that sampled other IC records. Because the GPU

methods that we have explored so far do not allow this

to happen, our simulated images tend to resemble the

lower radiance values of Figure 5. We expect that we

can account for this missing radiance by iterating our

previous step. By running the ambient kernel multiple

times, each time using as input an IC BVH created

from the previous run’s output, we can accumulate this

missing radiance in linear time with the number of

iterations, rather than in exponential time by changing

the minimum ray weight threshold.

At present, our implementation of iterative calls to the

ambient kernel is unreliable due to timeout issues2.

However, preliminary tests using small ICs and small

numbers of spawned rays show that this method can

produce radiance values much closer to the target

values. The left image in Figure 19 was rendered using

seven calls to the ambient kernel, simulating six

ambient bounces, in 32.1 seconds, of which 8.4

seconds represent GPU kernel activity and the rest is

CPU overhead. A corresponding Radiance simulation

with the same low accuracy settings takes 32.0 seconds

(Figure 19 right). We hope that with continued work,

our implementation’s simulation time will improve and

will scale better than Radiance to simulations with

greater numbers of rays.

2 See previous footnote.

0

2

4

6

8

10

12

14

16

18

20

1024 4096 16384 65536

Ti
m

e
(s

ec
o

n
d

s)

Primary Irradiance Rays

Ambient Kernel Time

Radiance Kernel Time

Total Time

CONCLUSION

ICs on the GPU have potential to speed up parallel ray

tracing for global illumination calculation, but they

need to be used wisely. In this paper, we have

demonstrated that core algorithms from Radiance can

be implemented in OptiX™ to achieve an order of

magnitude speed increase in basic backward ray

tracing. We have shown further that small ICs that

provide good scene coverage can be generated on the

GPU in less time than is required to render the scene

with a large IC created by Radiance. However, these

small ICs create results with less radiance because a

minimum ray weight threshold prevents them from

accumulating indirect irradiance through many ambient

bounces. We speculate that a multi-pass approach to

generating IC records will account for this missing

radiance, and preliminary testing of this approach

shows that it has promise.

Continued work is necessary in a number of areas.

First, a significant amount of code optimization can be

done to improve the performance of our OptiX™

implementation. In particular, many branching

methods ported from Radiance can be broken up into

separate CUDA™ programs that can be called

individually without occupying the GPU with

instructions that will not be carried out. This will also

be necessary in order to implement additional material

types and light transport methods that are not handled

by the current implementation. Second, additional

work is necessary to determine appropriate placement

of IC record seeds. We currently place all seeds in

view of the virtual camera and use a fisheye lens to

provide good scene coverage. However, while the IC

records used to create the final image should all be in

view of the camera, IC records from earlier iteration

steps should be more evenly distributed about the

space, including on the back sides of surfaces. Finally,

additional work is necessary stabilize and reduce the

overhead on the iterative approach to IC creation. This

could involve reducing memory transfer between the

GPU and CPU memory and varying accuracy

parameters between steps.

There are many potential benefits to the architecture

profession if Radiance algorithms can be parallelized

on the GPU. Faster simulation results can be produced

more frequently as an aid to design, and their sooner

availability makes it less likely that the design will

change during the simulation, rendering the simulation

results useless. Accurate simulation results make it

easier for architect to correctly size windows and

provide adequate artificial lighting without consuming

unneeded electricity. They also reduce the likelihood

of glare, which can reduce productivity in a work

environment. Faster ray tracing will also make annual

simulations more practical, as these take much longer

than point-in-time simulations. Thus, we believe that

successful creation of ICs on the GPU will be of great

benefit to future architects.

ACKNOWLEDGEMENTS

We wish to thank Professor Alan Edelman and Jeff

Bezanson for their comments in carrying out this

project, and our advisor Christoph Reinhart for his

input. Frédo Durand and Jaroslav Křivánek offered

useful insight into previous work on irradiance

caching. Andrew McNeil of Lawrence Berkley

National Laboratory provided suggestions for solving

the missing radiance problem. Thanks also to J. Alstan

Jakubiec for providing the model and Radiance input

files used for timing and illustration.

Figure 19 IC created with multiple passes and low accuracy settings in our OptiX™ implementation (left) and with

the same settings in Radiance (right).

REFERENCES

Aila, Timo and Samuli Laine, 2009. Understanding the

efficiency of ray traversal on GPUs. Proceedings

of High-Performance Graphics 2009, 145-149.

Debattista, Kurt, Luís Paulo Santos and Alan

Chalmers, 2006. Accelerating the irradiance cache

through parallel component-based rendering.

Proceedings of the 6th Eurographics conference

on Parallel Graphics and Visualization, 27-35.

Deitrich, Andreas, Ingo Wald, Carsten Benthin and

Philipp Slusallek, 2003. The OpenRT application

programming interface - towards a common API

for interactive ray tracing. Proceedings of the 2003

OpenSG Symposium.

Dubla, Piotr, Kurt Debattista, Luís Paulo Santos and

Alan Chalmers, 2009. Wait-Free Shared-Memory

Irradiance Cache. Proceedings of the 9th

Eurographics Symposium on Parallel Graphics

and Visualization, 57-64.

Frolov, Vladimir, Konstantin Vostryakov, Alexander

Kharlamov and Vladimir Galaktionov, 2013.

Implementing irradiance cache in a GPU

photorealistic renderer. Transactions on

Computational Science XIX. Marina L. Gavrilova,

C.J. Kenneth Tan and Anton Konushin, eds.

Springer Berlin Heidelberg, 17-32.

Koholka, Roland, Heinz Mayer and Alois Goller, 1999.

MPI-parallelized Radiance on SGI CoW and SMP.

Proceedings of the 4th International ACPC

Conference Including Special Tracks on Parallel

Numerics and Parallel Computing in Image

Processing, Video Processing, and Multimedia:

Parallel Computation, 549-558

Křivánek, Jaroslav and Pascal Gautron, 2009. Practical

global illumination with irradiance caching.

Synthesis Lectures on Computer Graphics and

Animation, 4 (1), 1-148.

Larson, Gregory Ward and Robert Shakespeare, 1998.

Rendering with Radiance. San Francisco: Morgan

Kaufmann Publishers, Inc.

Ochoa, Carlos E., Myriam B.C. Aries and Jan L.M.

Hensen, 2012. State of the art in lighting

simulation for building science: A literature

review. Journal of Building Performance

Simulation, 5 (4), 209-233.

Parker, Steven G., Austin Robison, Martin Stich,

James Bigler, Andreas Dietrich, Heiko Friedrich,

Jared Hoberock, David Luebke, David McAllister,

Morgan McGuire and Keith Morley, 2010. OptiX:

A general purpose ray tracing engine. ACM

Transactions on Graphics, 29 (4).

Purcell, Timothy J., Ian Buck, William R. Mark and

Pat Hanrahan, 2002. Ray tracing on programmable

graphics hardware. ACM Transactions on

Graphics - Proceedings of ACM SIGGRAPH

2002, 21 (3), 703-712.

Wang, Rui, Kun Zhou, Minghao Pan and Hujun Bao,

2009. An efficient GPU-based approach for

interactive global illumination. ACM Transactions

on Graphics - Proceedings of ACM SIGGRAPH

2009, 28 (3).

