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ABSTRACT 

While ray tracing is highly parallelizable in concept, 

the Radiance suite of programs for architectural global 

illumination simulation was written for serial execution 

and makes use of certain heuristic techniques that are 

not easily performed in parallel environments. It uses 

irradiance caching to store and reuse the results of 

expensive indirect irradiation computations. The 

irradiance cache has unpredictable size, and Radiance 

alternately reads and adds to it during a simulation, 

making it unfriendly to parallelization. 

The irradiance caching method proposed in this paper 

uses the OptiX™ engine for GPU ray tracing. 

Irradiance records are stored in buffers in GPU 

memory which can as necessary be used to create a 

bounding volume hierarchy (BVH) of known 

irradiance values based on their valid ranges. Queries 

into the irradiance cache are performed by casting a 

short ray into the BVH. Because the CPU maintains a 

handle to the irradiance cache, it is possible to read 

irradiance records from a file prior to simulation and 

write them back afterward. Therefore, this proposed 

method maintains consistency with the expected use 

and output of Radiance while performing calculations 

at higher speeds. 

INTRODUCTION 

Lighting of interior spaces is an important yet poorly 

understood component of architecture. While many 

countries have standards for acceptable indoor 

illumination levels, few people have the ability to 

accurately and quantitatively gage, let alone predict, 

illuminance levels. Because building designers must 

meet indoor illuminance criteria while balancing the 

desire for daylight with the problems of heat loss 

through windows and productivity loss caused by 

glare, physically-based global illuminance simulation 

is needed during building design. 

The Radiance suite of programs (Larson and 

Shakespeare, 1998) has become the gold standard for 

global illumination calculation used by architects and 

lighting designers. This can be attributed to Radiance’s 

flexibility, open source availability, and extensive 

validation through comparison to physical 

measurements (see Ochoa et al. (2012) for list of 

references). Radiance is used as a simulation engine by 

widely-used building performance simulation tools 

such as IES<VE>, Ecotect®, OpenStudio, DAYSIM, 

and DIVA for Rhino. However, Radiance simulations 

tend to be slow, especially in scenes with complex 

geometry. As a result, global illumination simulation 

using Radiance tends to take place late in the design 

process, after most design decisions are made, or else 

simplified models are used for simulation that may not 

accurately predict conditions in the physical building. 

Faster simulations are necessary in order to better 

predict and design interior lighting. 

In this paper, we propose a solution to speed up 

Radiance calculations by tracing multiple primary rays 

in parallel on a graphics processing unit (GPU). First, 

we briefly describe a framework built on Nvidia®’s 

OptiX™ ray tracing engine that allows our port of the 

Radiance source code to run on the GPU. Next, we 

introduce irradiance caching as a method commonly 

used in Radiance to speed up serial calculations and 

describe our method for reading an irradiance cache 

(IC) on the GPU by mapping it to a bounding volume 

hierarchy (BVH). Then, we describe how create and 

adaptively vary the size of an IC on the GPU using a 

two-stage method. Finally, we propose a multi-stage 

method that promises to produce more accurate 

irradiance values by tracing more ray reflections 

without an exponential increase in the number of rays 

cast. 

BACKGROUND 

Backward Ray Tracing 

The Radiance package includes a number of executable 

programs built around a bespoke backward ray tracing 

engine. In backward ray tracing, primary rays are 

emitted by from an origin point (a virtual camera or 

illuminance sensor) to sample the environment. 

Wherever a ray intersects a surface, it recursively 

spawns one or more new rays, depending on the 

surface material, and gathers their results into a single 



value that is returned as the parent ray’s result (Figure 

1). Typically, a small number of spawned rays are 

required for direct and specular reflections, and a much 

larger number of rays are spawned to sample the 

indirect irradiance due to ambient lighting at the 

intersection point. In Radiance, each ray returns red, 

green, and blue values with units of radiance 

(W•sr−1•m−2). The array of values returned from the 

primary rays can be displayed as an image; however, 

because the range of returned values typically varies by 

several orders of magnitude, these images are more 

easily interpreted using false colors (Figure 2). 

Additionally, each ray carries with it a weight 

corresponding to the maximum contribution it may 

make to its parent ray’s value. Rays weighted below a 

minimum threshold may be terminated without 

spawning new rays in order to prevent exponential 

growth in the number of rays traced by the simulation. 
 

 

Figure 1 In backward ray tracing, each primary ray 

traverses an acceleration structure of scene geometry 

until it intersects a surface. The intersection usually 

spawns additional rays. 
 

 

Irradiance Caching 

The number of rays to traverse can be further reduced 

by caching and reusing indirect irradiance values. 

While direct and specular reflections change abruptly 

over spatial dimensions, ambient lighting due to 

indirect irradiance is less variable, so a single value 

may be applied to all ray intersections within a 

calculated radius of the point where it was measured. 

For instance, given two cached irradiance values at 

points E1 and E2 in Figure 3, the irradiance at point A 

may be found by interpolation, and the irradiance at 

point B may be found by extrapolation. Only when a 

ray intersection is not contained within the validity 

radius of any IC record (such as at point C) must a new 

record be calculated and added to the IC. This strategy 

reduces overall ray tracing time by an order of 

magnitude (Larson and Shakespeare, 1998), but it also 

eliminates the possibility of straightforward 

parallelization of the Radiance source code because the 

final value of each ray depends on the IC records 

created by previous rays (Figure 4). 
 

 

Figure 3 IC records may be applied to all points within 

valid radii (Larson and Shakespeare, 1998). 
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Figure 2 Radiance image tone-mapped with false colors (left) and low dynamic range photorealistic colors (right). 

 

 



 
Figure 4 In single-threaded ray tracing, the program 

may alternately write to and read from the IC. 
 

Various methods have been proposed for creating an 

IC using parallel threads. On CPU clusters, most 

strategies involve occasional synchronization of 

separate local ICs for each thread. This may 

occasionally result in duplicate IC records created 

simultaneously by more than one CPU. On UNIX 

systems, multiple instances of Radiance may share a 

single irradiance cache using network file locks 

(Larson and Shakespeare, 1998). Synchronization can 

also be performed using MPI (Koholka et al., 1999; 

Debattista et al., 2006). Dubla et al. (2009) propose a 

multi-threaded approach that allows wait-free 

synchronization of local ICs. 

Using GPUs, others have implemented IC creation as a 

pre-process carried out prior to ray tracing-based image 

creation. Generally, these approaches are geared 

toward creation of visually plausible images rather that 

attempting to achieve physical accuracy. Wang et al. 

(2009) use photon mapping and k-means clustering to 

select points in the scene for use as seeds for IC 

records. Křivánek and Gautron (2009) use splatting to 

store irradiance values in a two-dimensional cache that 

may be projected onto the scene from the camera’s 

vantage point. Using pure ray tracing, Frolov et al. 

(2012) create an irradiance cache in 20-30 passes, 

where each pass involves both addition of IC entries 

visible to the camera and elsewhere in the scene for 

secondary rays. 

Ray Tracing on the GPU 

While GPUs are primarily designed for raster 

rendering, the development of GPU-based ray tracers 

has closely paralleled the development of 

programmable GPU raster pipelines. As early as 2002, 

the GPU was used for geometry traversal, ray 

intersection testing, and ray result shading (Purcell et 

al., 2002). Dietrich et al. (2003) developed a ray 

tracing library, OpenRT, that imitates OpenGL® in 

structure, including programmable shaders to execute 

at ray intersections; however, their specification was 

not widely implemented by hardware manufacturers. 

Eventually, general purpose GPU (GPGPU) language 

extensions such as Nvidia®’s Compute Unified Device 

Architecture (CUDA™) made it possible to implement 

all components of a ray tracing engine on GPU shader 

processors (Aila and Laine, 2009; Wang et al., 2009). 

In 2010, Nvidia® released the OptiX™ ray tracing 

engine, which uses CUDA™ to perform both ray 

traversal and shading on the GPU (Parker et al., 2010). 

The OptiX™ library is intended to be easily inserted 

into existing CPU-based code to replace a serial ray 

tracing engine. OptiX™ provides built-in BVH 

creation and ray traversal algorithms to detect ray-

surface intersections. The programmer is required to 

re-implement ray generation, intersection testing, 

closest hit, any hit, and miss algorithms as CUDA™ 

programs. OptiX™ compiles these programs into 

virtual machine code to be further optimized by a just-

in-time compiler to create device-specific instructions 

at runtime. 

PARALLEL RAY TRACING WITHOUT 

IRRADIANCE CACHING 

When the IC is disabled, Radiance’s backward ray 

tracing algorithm is “embarrassingly parallel,” and 

aside from the task of porting the C code to CUDA™, 

its parallelization is trivial (Figure 1). After the scene 

geometry is created and used to generate the BVH 

acceleration structure for ray traversal, a thread is 

created on the GPU for each primary ray, and all rays 

spawned by the primary ray or its descendants are 

traversed on that thread. 

Conceptually, it is easy to think of all primary rays as 

being traversed simultaneously, but in reality, this is 

not the case. The tests we present were carried out on a 

workstation equipped with a 3.4 GHz Intel® Core™ 

i7-4770 processor and an Nvidia® Quadro® k4000 

graphics card. While the images we show are each 512 

× 512 pixels (that is, 262,144 primary rays), the GPU 

has only 768 CUDA™ cores. OptiX™ groups threads 

into warps of 32, so the GPU can process at most 24 

warps simultaneously, while images of that size are 

divided into 8192 warps of adjacent rays. As a result, 

simulation time with OptiX™ generally varies linearly 

with the number of primary rays, despite the fact that 

primary rays are traced in parallel. 
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The values obtained from our OptiX™ implementation 

closely match those from Radiance without an IC 

(Figure 5). Furthermore, the OptiX™ implementation 

produces results in 27.6 seconds, while Radiance 

required 243 seconds with the same settings, not 

including the time required to read the input file. This 

represents an 8.8-fold speed improvement.  

Our goal, however, is to match the image in Figure 2, 

which shows higher radiance values due to its IC but 

requires 4838 seconds to create in Radiance. We 

theorize that the higher values occur because the 

cached irradiance levels are themselves created by 

summing the contributions of rays that sample other 

cached values. Because the earlier created IC records 

started with a higher ray weight, this has the effect of 

artificially lowering the minimum ray weight 

threshold. While it is not yet practical to run tests with 

very low minimum ray weight thresholds1, we can test 

our hypothesis on the GPU by reducing other accuracy 

parameters in order to reduce simulation time. Figure 6 

shows the OptiX™ kernel and total simulation times 

(not including input file reading) for reduced-accuracy 

                                                           
1 Simulations with low minimum ray weight thresholds 

can take days to run on the CPU. On the GPU, they 

result in high processor loads which can cause the GPU 

to become unresponsive and in turn cause Windows’ 

Timeout Detection and Recovery (TDR) system to 

reboot the GPU, terminating any running simulation. 

By default, TDR occurs after 2 seconds without 

response, during which the screen appears to be frozen. 

For our tests, we have set the TDR delay to 10 seconds, 

which allows our GPU threads to remain active longer 

at the expense of user interaction. A better solution 

would be to use NVIDIA®’s Tesla® GPUs, which are 

intended solely for GPGPU applications and do not 

timeout. 

simulations with a typical minimum ray weight 

threshold of 0.002 and a low threshold of 0.0002. As 

the number of bounces allowed in gathering indirect 

irradiance increases, the total number of rays created 

and the total simulation time are expected to increase 

exponentially. However, the actual times level off 

quickly, suggesting that the minimum ray weight 

threshold is indeed a limiting factor. Furthermore, the 

lower threshold produces an image closer to the target 

than the normal threshold (Figure 7). 

 

Figure 6 Simulation time dependence on number of 

ambient bounces. 
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Figure 5 Results from our OptiX™ implementation (left) and Radiance (right) without an IC. 

 



READING FROM AN IRRADIANCE 

CACHE IN PARALLEL 

Because Radiance runs on a single thread, it is trivial to 

read from and write to the same IC during a simulation. 

Radiance is also able to save its IC as a binary file to 

later use to enable multiple simulations of the same 

space. On the GPU we must read from and write to the 

IC at separate times. Here, we discuss our method for 

reading from the IC, using IC files created by Radiance 

as input. 

Each IC record represents a disc over which a given 

indirect irradiance value is valid, along with directional 

vectors indicating the disc’s orientation in space and 

gradients in the plane of the disc. Our first step is to 

enter all available IC records into a BVH acceleration 

structure. While OptiX™ generates the BVH 

automatically, we must specify a bounding volume for 

each disc. We define an axis-aligned bounding box 

(AABB) for each entry as 

 𝐴𝐴𝐵𝐵 = 𝑃 ± 𝑟√1 − 𝐷2 (1) 

where P is the center point of the disc, r is its radius, D 

is the normal vector of the plane containing the disc, 

and all operations are element-wise (Figure 8). 

Because CUDA™ treats tuples as primitives, this is a 

rare case in which the source code closely resembles 

the mathematical expression. The AABBs of all IC 

record are independent and can be computed in parallel 

on the GPU, although their insertion into the BVH tree 

is a serial operation. Once the BVH containing IC 

values is created, our OptiX™ implementation can 

determine indirect irradiance values at each 

intersection by spawning a single ray into the IC BVH 

acceleration structure, rather than by spawning 

thousands of rays into the scene (Figure 9). 

 

Figure 8 An axis-aligned bounding box for a disc. 
 

 
Figure 9 Our OptiX™ implementation uses a single 

ray at each intersection to find relevant IC records. 
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Figure 7 Results from our OptiX™ implementation with a low minimum ray weight (left) and normal minimum ray 

weight (right) using a reduced number of ambient divisions for indirect irradiance sampling. 

 



Figure 10 shows the time required to generate the 

scene from Figure 2 depending on the number of IC 

entries included in the BVH. The OptiX™ kernel time 

varies linearly with IC size, and the total simulation 

time (not including file reading) demonstrates a 

constant 3.6-second overhead. While our OptiX™ 

implementation requires 56.8 seconds to traverse the 

full 109,998 IC entries created by Radiance in our 

example scene, we note that Radiance itself is able to 

produce the same result in 6 seconds given the same IC 

file. (The file itself took well over an hour to create 

with Radiance.) Furthermore, the vast majority of these 

IC values will not be useful to final processing as they 

represent intermediate steps in creating other IC values 

(through multiple bounces). Clearly, a better approach 

would be to adaptively vary the size of the IC and copy 

only the necessary IC records to the GPU. 
 

 

Figure 10 Simulation time dependence on IC size. 

CREATION OF AN IRRADIANCE CACHE 

IN PARALLEL 

A simple approach to creating an IC on the GPU is to 

generate IC records as a pre-processing step prior to 

generating the image. We use a second OptiX™ kernel 

for this purpose. In our ambient OptiX™ kernel, each 

primary ray in our grid returns a 72-byte IC record as 

its payload rather than a 12-byte RGB radiance value, 

as in our first OptiX™ kernel (Figure 11). The rules for 

spawning additional rays are unchanged between the 

two kernels. We launch our ambient kernel on a 

smaller number of threads, sending out one primary 

irradiance ray and returning one IC record (or fewer 

should the ray not intersect any surface) per thread. 

The number of returned IC records thus varies linearly 

with the number of primary rays (Figure 12). However, 

total simulation time also increases with the size of the 

IC produced (Figure 13). While large IC sizes result in 

slow simulations, small cache sizes can leave areas of 

the scene uncovered by any IC entry (Figure 14).  
 

 

Figure 11 Our ambient kernel produces an IC record 

at from each primary ray. 
 

 
Figure 12 IC size dependence on number of primary 

rays in ambient kernel. 
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Figure 13 Simulation time dependence on number of 

primary rays in ambient kernel with one ray per 

thread. 

Our solution is to allow the number of primary rays 

produced by each ambient kernel GPU thread to vary. 

The ray generation program loops until it reaches a 

user-defined limit, and generates a new primary ray 

with each loop in a direction defined by the following 

code and illustrated in Figure 15. 

static __device__ 

float2 get_offset( unsigned int index ) { 

 float2 offset = make_float2( 0.5f ); 

 float delta = 0.5f; 

 

 for ( ; index > 0u; index >>= 2 ) { 

  unsigned int x = index & 1u; 

  unsigned int y = (index >> 1 ) & 1u; 

  y = x ^ y; 

  if ( x ) offset.x += delta; 

  if ( y ) offset.y += delta; 

  delta *= -0.5f; 

 } 

 

 return offset; 

} 
 

Because no BVH exists to search for overlapping IC 

records yet, the primary ray can only test for 

intersection with IC records generated on its own 

thread. As a shortcut, each primary ray other than the 

first is assigned as a parent IC record the closest record 

previously calculated by its thread. This is the record 

returned by the ray whose index is the current index 

less the greatest power of two less than or equal to the 

current index (Figure 16). If the parent’s disc overlaps 

the new primary ray’s intersection with the scene, then 
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Figure 15 Order of primary rays sent by one thread. Filled circles indicate locations of new rays at each level. 

 

       
Figure 14 Results from our OptiX™ implementation with a large IC creating smoother irradiance gradients (left) 

and small IC providing insufficient coverage (right). 

 



no new IC record is generated for this ray or any of its 

future closest neighbors. This dramatically lowers the 

number of IC records created (Figure 12) and the 

overall simulation time (Figure 17) while providing 

good coverage for the scene (Figure 18). 
 

 

Figure 16 Parent IC records for each primary ray are 

the result of the ray whose index is the current index 

minus the largest possible power of two. 
 

 

 
Figure 17 Simulation time dependence on number of 

primary rays in ambient kernel with multiple rays per 

thread. 

 

Figure 18 IC created with multiple primary rays per 

thread in our OptiX™ implementation. 

ITERATIVE IRRADIANCE CACHE 

CREATION IN PARALLEL 

We have theorized that the difference in radiance 

levels between Figure 2 and Figure 5 is caused by the 

presence of IC records that are created by summing 

rays that sampled other IC records. Because the GPU 

methods that we have explored so far do not allow this 

to happen, our simulated images tend to resemble the 

lower radiance values of Figure 5. We expect that we 

can account for this missing radiance by iterating our 

previous step. By running the ambient kernel multiple 

times, each time using as input an IC BVH created 

from the previous run’s output, we can accumulate this 

missing radiance in linear time with the number of 

iterations, rather than in exponential time by changing 

the minimum ray weight threshold. 

At present, our implementation of iterative calls to the 

ambient kernel is unreliable due to timeout issues2. 

However, preliminary tests using small ICs and small 

numbers of spawned rays show that this method can 

produce radiance values much closer to the target 

values. The left image in Figure 19 was rendered using 

seven calls to the ambient kernel, simulating six 

ambient bounces, in 32.1 seconds, of which 8.4 

seconds represent GPU kernel activity and the rest is 

CPU overhead. A corresponding Radiance simulation 

with the same low accuracy settings takes 32.0 seconds 

(Figure 19 right). We hope that with continued work, 

our implementation’s simulation time will improve and 

will scale better than Radiance to simulations with 

greater numbers of rays.  

                                                           
2 See previous footnote. 
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CONCLUSION 

ICs on the GPU have potential to speed up parallel ray 

tracing for global illumination calculation, but they 

need to be used wisely. In this paper, we have 

demonstrated that core algorithms from Radiance can 

be implemented in OptiX™ to achieve an order of 

magnitude speed increase in basic backward ray 

tracing. We have shown further that small ICs that 

provide good scene coverage can be generated on the 

GPU in less time than is required to render the scene 

with a large IC created by Radiance. However, these 

small ICs create results with less radiance because a 

minimum ray weight threshold prevents them from 

accumulating indirect irradiance through many ambient 

bounces. We speculate that a multi-pass approach to 

generating IC records will account for this missing 

radiance, and preliminary testing of this approach 

shows that it has promise. 

Continued work is necessary in a number of areas. 

First, a significant amount of code optimization can be 

done to improve the performance of our OptiX™ 

implementation. In particular, many branching 

methods ported from Radiance can be broken up into 

separate CUDA™ programs that can be called 

individually without occupying the GPU with 

instructions that will not be carried out. This will also 

be necessary in order to implement additional material 

types and light transport methods that are not handled 

by the current implementation. Second, additional 

work is necessary to determine appropriate placement 

of IC record seeds. We currently place all seeds in 

view of the virtual camera and use a fisheye lens to 

provide good scene coverage. However, while the IC 

records used to create the final image should all be in 

view of the camera, IC records from earlier iteration 

steps should be more evenly distributed about the 

space, including on the back sides of surfaces. Finally, 

additional work is necessary stabilize and reduce the 

overhead on the iterative approach to IC creation. This 

could involve reducing memory transfer between the 

GPU and CPU memory and varying accuracy 

parameters between steps. 

There are many potential benefits to the architecture 

profession if Radiance algorithms can be parallelized 

on the GPU. Faster simulation results can be produced 

more frequently as an aid to design, and their sooner 

availability makes it less likely that the design will 

change during the simulation, rendering the simulation 

results useless. Accurate simulation results make it 

easier for architect to correctly size windows and 

provide adequate artificial lighting without consuming 

unneeded electricity. They also reduce the likelihood 

of glare, which can reduce productivity in a work 

environment. Faster ray tracing will also make annual 

simulations more practical, as these take much longer 

than point-in-time simulations. Thus, we believe that 

successful creation of ICs on the GPU will be of great 

benefit to future architects. 
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