
18.337 Project Proposal: Julia Documentation

Dragos Velicanu

December 17, 2013

Abstract

For the �nal project I have written an alternate documentation sys-

tem that builds on top of the current framework and greatly expands the

capabilities and usefulness of trying to get help while working at the Julia

terminal. The system I created has a standard format for documenting

the funnction, which has a Description, Input, Output, two URLs, instruc-

tions where to �nd the source code, a See Also, and unlimited examples.

This content is displayed with nice colored formatting in the Julia com-

mand line terminal but still needs some work to look more than plain text

in IJulia. In this report I show how a documentation entry is created,

appended, and displayed. Some issues and proposed improvements are

discussed. In conclusion this documentation system might not be goood

enough to be used by the Julia community for all time, however since it's

much better than what's currently available and it's already working and

very fast to use, add, and understand, there is merit in adopting it until

the �nal improved documentation is in place.

1 Introduction to Current Julia Documentation
Status

Julia currently has some documentation online [1] which has an extensive man-
ual, a search function, and a command and function index. The manual and
search part of the documentation is pretty good already. What is currently
lacking is how to use speci�c functions with examples that work out of the box.
The builtin help(...) macro currently gives only a very brief description of the
function with not a single example and is generally not very helpful for new Ju-
lia users from my personal experience trying to understand how to get plotting
to work, how to get arbitrary precision to work, and even how the help itself
works. In absence of better documentation, the best strategy so far for �guring
how something works is to look inside the source code and trial and error.

The improvements to the documentation system described in this paper were
partially motivated by what I personally �nd the most useful when learning a
new language from scratch: examples; seeing them, running them, and modif-
ing them. Additionally other well written documentation systems, like that of

1

Matlab and Mathematica, served as inspiration for the structure and content of
what is to be displayed to the user.

2 The improved documentation system

My documentation function is built on top of the current Julia help, i.e. doc(function_name)
calls help and in addition displays any new things that may have been written.
I didn't modify the help function itself since it was not very transparent how
it works (and there was no documentation about how it works!). I found the
helpdb.jl that is loaded and read by help but the current framework only dis-
plays text help, so I wrote my own side documentation function that is more
extensive in what it can show. The documentation system works from three
functions: docwrite(), doc(), and docaddex() described below.

2.1 doc(fname)

doc() takes one input which is the name of the function for which the user wishes
to display the documentation and outputs a display of text that has been written
for the function. In addition, it also executes any examples that may have been
written in the command line itself. This function is very simple, it calls help
on the function and then it executes the documentation macro that has been
written for the function. If no such custom documentation macro exists, it still
calls help and informs the user that no custom documentation has been written
for this yet.

Figure 1: The documentation entry for doc

2.2 docwrite(fname,desc,input,output,url1,url2,seealso,examples...)

docwrite() is the tool that helps in creating new documentation. As inputs, it
takes a valid function name, a de�nition for that function, a description of the
inputs the function accepts, a description of the outputs the function throws,
a URL linking to the IJulia help page, another URL that contains other useful
information regarding the function, the location of the source code, see also

2

which delineates other functions of potential interest to the user and lastly a
set of in�nite examples that are executable. The inputs are taken in the above
order. What docwrite() does is that it creates a .jl �le of the given speci�cation
which gets run when doc() on that function is called.

Figure 2: The documentation entry for docwrite

2.3 docaddex(fname,examples...)

docaddex() is there so that new examples could be added to existing documen-
tation by di�erent users. I decided to incorporate this function in addition to
docwrite since it's likely that situations will arise where somoene wants to add
a cool new example to an existing documentation without overwriting what is
already there.

Figure 3: The documentation entry for docaddex

3

2.4 Before and After: Documentation structure

As can be seen from Figures 1-3 and the comparison below, the improved doc-
umentation shows the current help(...) entry, which defaults to calling meth-
ods(...) on the function if no help exists, in addition shows the custom descrip-
tion written for the doc, the input and output, the two relevant URL's for julia
and general help, some functions to see also, how to get the source code, and
the list of examples. In Figure 4 below is shown the �before� of what is currently
available as documentation for an arbitrary function I chose as my example, and
Figure 5 shows the �after� of what is possible for documentation for the same
function with the new documentation system.

(a) Online help entry (b) Terminal help entry

Figure 4: Current help entry documentation both online and in Julia

Figure 5: The new documentation entry of abs(example)

The code to create the new abs documentation using docwrite is repro-

4

duced below, and also happens to be the example that is shown when you ask
doc(docwrite) shown in Figure 2. A peek inside the documenation .jl �les shows
that the command that was used to create them is stored at the top in a comment
for educational purpose as well as a quick way to remake the documentation �le
with a small change if needed.

Listing 1: Code that generates the abs documentation

docwr i te (abs , " Takes the abso lu t e va lue " ,"x can be in t ege r ,
f l o a t , complex , matrix or array and many more " ," a
p o s i t i v e number or array o f the same type , i . e . the abs (
f l o a t) w i l l r e turn a f l o a t " ," http :// docs . j u l i a l a n g . org /en
/ l a t e s t / s t d l i b /base /? h i g h l i g h t=abs#Base . abs " ," http ://
mathworld . wolfram . com/AbsoluteValue . html " ,"norm Int
Float64 Complex" ,"x=2" ," abs (x) " ," p r i n t l n (abs (x)) " ,"y
=−3","abs (y) " ," p r i n t l n (abs (y)) " ," z=−4.9384" ," abs (z) " ,"
p r i n t l n (abs (z)) " ," t=3+4im" ," p r i n t l n (abs (t)) " ," p r i n t l n (abs
([x , y , z , t])) ")

The design and work�ow of the entire system is shown in Figure 6. In short,
docwrite creates/overrides a doc_functionName.jl �le when executed with the
appropriate parameters. Inside that .jl �le is the information to be displayed
in a series of println statements, some with the color that is shown on the
terminal, followed by an arbitrarily long list of examples which get both printed
and executed line by line. The macro docadd just sticks more examples in the
same manner at the end of a pre-existing .jl documentation macro, leaving the
rest untouched. Lastly, the macro doc just executes the .jl �le matching the
pattern doc_functionName.jl after calling help.

5

Figure 6: The work�ow of the documentation system.

2.5 A neat example: plot documentation

Since my implementation thinks of all Julia documentation as executable .jl
macros, the capability of what the documentation can do or show is far greater
than what is possible with just text formatted in special ways. This last example
shows a documentation for plotting in Julia that I wrote to show the power of
this way of doing documentation. Documenting plot is a good example because
currently no documentation whatsoever exists within the Julia help function,
secondly plot comes from a package and raises the question of how to document
and integrate functions from packages, and lastly plot is one of the hardest
things to get working, especially if you can't �nd the documentation for it
(the current best place is on github [4]). The documentation in Figure 7 not
only adds documentation for an undocumented function, but also leaves little
doubt for a novice user how to get it working and in addition displays the
plot in the example. This shows the real power of thinking of documentation
as macros instead of just text since now doc(someFunction) can show plots,
images, SVDs... basically anything that can be done in Julia can be shown by
the documentation, far beyond simple formatted text.

6

Figure 7: Documentation entry for plot as seen in IJulia.

3 Issues / Future work

While it is very neat to have working examples in the documentation that run
when you call help, it could also be very dangerous at the same time. For
instance, if the documentation for addprocs runs as an example addprocs(4) ,
when run by the user seeking that help processes could be added without his
knowledge when that could be contrary to what he wants. Also if the help for
plot is called for instance and if the user already has some plots displayed that
he was working on, the documentation plots would erase his then current work
which could be frustrating. These problems show the importance of writing
�safe� documentation when all documentation are executable macros. Thus
when writing the documentation for state-changing functions like addprocs or
plot one should be careful to just print, and not execute, the examples which

7

could be disruptive to the user seeking help. Another perhaps more elegant
solution would be to run the documentation macro in a sandboxed shell that
doesn't a�ect ones environment. This could perhaps be implemented in docwrite
or doc while leaving the rest of the framework as well as currently written
documenation macros intact.

Another criticism that I received for my project was that my documentation
function has a set structure that is not very �exible. It is in�exible on two levels,
one that its structure is unchanging and centrally determined i.e. {de�nition,
links, examples etc} and secondly that it's a .jl �le which my not scale in the
way we wish to user interfaces beyond the terminal and IJulia it was designed
for. The formatting should be decoupled from the content of the documentation
since di�erent places that use Julia can have di�erent ways to ideally display
the content especially for ways we haven't imagined yet i.e. beyond the terminal
and IJulia. The current system doesn't allow for that. It is also hard to make
changes to the current documentation system without rewriting the current
documentation �les. Thus it will also be hard to extract the content from the
current documentation system to be used in a di�erent interface since one would
e�ectively have to parse the .jl �les to retrieve the content.

As a technical note of improvement, the examples need better quotation
parsing since passing an example that takes a �string� as input will run into er-
rors when trying to println the quotes and currently have to be escaped by hand.
Additionally the text color formatting that is seen in the terminal is absent when
used in IJulia, so a future step would be to either modify print_with_color to
also work in IJulia in addition to the terminal, or to modify the documentation
system to do this. It would also be very nice if a way is found to make the URL
links clickable in IJulia

Ultimately one should decouple the content of the documentation from how
to display the documentation. A very good proposal on how to do this has
been discussed here [2] . Doing so would create a documentation system that is
lasting and reusable since ways we interact with the code may evolve and the
way to display documentation can evolve with them while the content itself can
remain static and reusable.

Despite all these issues that writing a state-of the art documentation which
is �exible as well as unbreakable will take a lot of time as well as work by many
developers. In the meantime, the system of documentation I have developed
is a good starting point for the accumulation of content. From my experience
using Julia, I have realized that very little useful documentation exists and I
found myself looking at the source code every time even for trivial things like
how to set arbitrary precision in Julia. In order to make a good documentation
system we need content in addition to functionality. My system is a very good
way to collect a lot of content since it is so simple to use, documentation can
be added very quickly by any user, and the system is already functional.

8

4 Conclusions

Julia is an extremely versitile and powerful language that is easy to understand
and learn from simple examples. The current documentation is very limited,
which is probably good enough for experienced Julia users or experienced coders
used to styles similar to Julia when seeking help, but is a major roadblock to
new users or novice programmers seeking to learn the language due to the lack
of easily accessible examples. I have designed and implemented a useful help
template for Julia, inspired by documentation seen in Matlab and Mathemat-
ica, in a backwards compatible way that is full of examples for users to learn
from. I have documented a few functions in this framework (abs, plot, and the
everything I wrote: doc, docwrite, docaddex).

While my implementation is not the �nal solution to providing the best
documentation system for Julia, it does o�er signi�cant improvements over the
current help functionality and can be an e�ective solution until the real doc-
umentation system is written. Since Julia is becoming easier to set up and is
used by more and more MIT students and other aspiring coders, some trying
programming for the �rst time, it's important to have a working system of use-
ful documentation �lled with examples before they become too frustrated with
the learning steps. I have no doubt the �nal system of documentation will be
much better than what I have put together and this work will certainly become
obsolete at that point. However that system is still being talked about and no
one is writing the code to get it working, it could be a long time before it gets
done.

In conclusion, until the perfect documenation system designed to stand the
test of time for Julia's long life ahead is created by the experts, the simple system
shown here that vastly adds in quality to the current help functionality, can,
and perhaps should, be used, so that the beginners like myself have something
to guide us when we need it most. This system is publicly available on Github
[3] and is extremely easy to expand the database of documented functions and
to add to any Julia version on any computer.

References

[1] �Julia Documentation.� Julia Documentation � Julia Lan-
guage 0.3.0-dev Documentation. Web. 17 Dec. 2013.
<http://docs.julialang.org/en/latest/>.

[2] �Associating Data with Functions, Modules, and Glob-
als - Comment Thread.� GitHub. Web. 23 Nov. 2013.
<https://github.com/JuliaLang/julia/issues/3988#issuecomment-
29141667>.

[3] Velicanu, Dragos. �Julia Documentation Project Github.� GitHub. Web. 17
Dec. 2013. <https://github.com/velicanu/doc_18337_�nal_project>.

9

http://docs.julialang.org/en/latest/
https://github.com/JuliaLang/julia/issues/3988#issuecomment-29141667
https://github.com/JuliaLang/julia/issues/3988#issuecomment-29141667
https://github.com/velicanu/doc_18337_final_project

[4] Johnson, Steven G. �The PyPlot Module for Julia.� GitHub. Web. 17 Dec.
2013. <https://github.com/stevengj/PyPlot.jl>.

10

https://github.com/stevengj/PyPlot.jl

	Introduction to Current Julia Documentation Status
	The improved documentation system
	doc(fname)
	docwrite(fname,desc,input,output,url1,url2,seealso,examples...)
	docaddex(fname,examples...)
	Before and After: Documentation structure
	A neat example: plot documentation

	Issues / Future work
	Conclusions

