
Finding Frequent
Item Pairs
Runmin Xu, Lu Lu

Background
● Basket: a set of items someone bought together in one

time
○ eg. {apple, milk, coffee, orange}

● We want to find item pairs that appear together
“frequently” in baskets
○ {a,b,c}, {a,b,d}, {a,b,e}, {a,b,f}
○ [a,b] appears frequently !

Background

● Frequent pair
○ Given threshold s, the pairs whose appearance

frequency > s are called frequent pairs

Brute-force Method
● Count frequency of every possible pair

● n distinct items
○ n*(n-1)/2 pairs
○ space complexity: O(n^2)

● Suppose 10^5 items, counts are 4-byte integers
○ 5 *10^9 pairs
○ 2 *10^20 (20 GB) memory needed

How to improve?
● If [a, b] are frequent pair,

○ frequency([a,b]) > threshold
● Then

○ frequency(a) > threshold
○ AND frequency(b) > threshold

● Therefore, find frequent individual item first!

Find frequent items
● Read baskets and count the frequency of each

individual item
○ Space complexity: O(n)

● Find the items with frequency > threshold

● Split the dataset into a number of subset and count item
frequencies in parallel (MapReduce)

Find frequent pairs
● Method 1

○ Generate a list of possible frequent pairs based on
results from single count (O(m^2) space)

○ For each basket, iterate through the list to check if
each pair exist

○ Time complexity: O(m^2*L*N), L is the length of a
basket, N is the number of baskets

Find frequent pairs
● Method 2

○ For each basket, generate a list of frequent single
items, then generate a list of possible frequent pairs
and count

○ Iterate through all baskets
○ Time complexity: O(L^2*N)
○ L is usually much smaller than m^2

Parallelization

Dataset
● 999,002 transactions
● 41,270 distinct items

Parallelization performance
1.7 GHz Intel Core i5
2 cores

Improvement on Memory Usage
● Based on frequent individual items, we generated a set

of possible frequent paris,
○ Define these pairs as “candidate pairs”

● What if the number of candidates pairs are very large?
○ eg. not fit in memory

Hash Table
● Create a hash table with a number of buckets
● For each candidate pair, hash it to one bucket
● We only count the frequency of each bucket, not the

candidate pair
● Space Complexity

○ O(k), k is the # of buckets
○ Typically, # of buckets << # of candidate pair

Hash Table
● Frequent bucket

○ Frequency(bucket) > threshold
● If a bucket contains frequent candidate, then it must be

frequent bucket
● Only the candidate pairs in frequent buckets need to be

considered
● In our test, this method saves about 65% memory

Thank you !

 Q & A?

