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1 Introduction

As the title suggests, this document is a review of a newcomer’s journey
into the world of Julia. In particular, the newcomer is user rather than a
developer. Two different applications of Julia are reviewed, and the issues
encountered along the way are discussed.

2 Part 1

The characteristic vibrational modes of a physical system are determined
by the potential energy term of the system’s Hamiltonian. These vibrations
are of interest because of their properties govern thermal transport in semi-
conductors,The second order derivatives of the potential energy with respect
to displacements about the equilibrium position of the atoms, colloquially
referred to as the second order force constants, is a positive definite block-
diagonal Hessian matrix. We start with the simple one-dimensional mass-
spring configuration, as shown in Fig. 1. Here, un is the displacement from
equilibrium of the nth atom with mass m and Un is the displacement from
equilibrium of the nth of atom with mass M . The equations of motion of
a linear diatomic chain considering only nearest neighbour interactions (K1
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Figure 1: Diagram of a linear diatomic chain of atoms.

and K2 are the respective spring constants in accordance with Hooke’s Law)

M
∂2Un

∂t2
= −K1(Un − un)−K2(Un − un−1) (1)

m
∂2un

∂t2
= −K1(un − Un)−K2(un − Un+1) (2)

The coupled ordinary differential equations can be represented as a ma-
trix equation, KM−1U = 0, assuming a plane wave solution for atomic dis-
placement. The square root of the eigenvalues of KM−1 are the harmonic
frequencies of the characteristic vibrational modes. For this one-dimensional
case with the masses are set to unity and M is the identity matrix, the
vibrational properties are determined by the stiffness matrix

Kordered =


2 −1 0 · · · −1
−1 2 −1 · · · 0
...

. . . . . . . . .
...

−1 0 · · · −1 2

 . (3)

For a perfect systems, the spring constants are equal between atoms.
Understanding the effects of disorder (i.e.: point defects, isotopes, alloying
elemesnts or amorphous phases) is critical in order to be able to engineer
materials with specific thermal transport properties. Typically, disorder is
treated as a perturbation of the perfect system [1, 2, 3, 4, 5]. The validity
of this assumption is questionable and does not necessarily hold for all cases
[6]. Disorder can manifest through the spring matrix or the mass matrix. In
this study, disorder is controlled through the manipulation of the spring con-
stants. Localized disorder, such as a point defect, is introduced by tweaking
the spring constants of a select few atoms. For example, the parameter p
tunes the spring constants attached to the first atom
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Kdefect =


2p −1p 0 · · · −1p
−1 2 −1 · · · 0
...

. . . . . . . . .
...

−1 0 · · · −1 2

 . (4)

Delocalized disorder, such as amorphous or glassy systems, manifests in
terms of much longer range interactions. Here, this interaction is introduced
through an off-diagonal element parameter p

Klr =



2 + p −1 0 · · · −p 0 · · · −1
−1 2 + p −1 · · · 0 −p · · · 0
...

. . . . . . . . . . . .
...

−p · · · −1 2 + p −1 · · · · · · 0
0 −p · · · −1 2 + p −1 · · · 0
...

. . . . . . . . . . . . . . .
...

−1 0 · · · −p · · · · · · −1 2 + p


. (5)

This type of disorder is very much analogous to the coupling between
graphs discussed by Radicchi and Arenas [7]. Their work demonstrated an
abrupt transition in the behavior of the Fiedler eigenvalue, Λ2, of intercon-
nected graphs as a function of the strength of the coupling, p, between graphs
[7] [

LA + p1 −p1
−p1 LB + p1.

]
(6)

By tuning p for the single defect and delocalized cases, its effect on the
Fiedler eigenvalue can be examined. Naturally, Julia’s implementation is
succinct. Although these matrices are sufficiently sparse, the eigenvalues
obtained from the eigs call deviated from those obtained with eig as shown
in the appendix. 1

Good agreement between the eig results for the perfect and long range
case obtained from Julia when compared against the equivalent MATLAB
implementation were found (see Fig. 2). Note that the single defect case
differed considerably, which is likely the consequence of how each language
handles numerical precision.

1There is ongoing discussion about the future of eigs with the developers of Julia. See
Issues 1573 and 2956 for example.
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Figure 2: Absolute difference between Fiedler eigenvalues obtained from Julia
and MATLAB using eig.

f unc t i on p f e i d l e r (n , pp )
lam = @para l l e l ( hcat ) f o r p =1: l ength (pp)

#cons t ruc t matrix
k=2∗eye (n)− c i r c s h i f t ( eye (n ) , 1 )

−c i r c s h i f t ( eye (n) ,−1)
#i n s e r t o f f−d iagona l e lements
#subt rac t pI from diagona l
pr=pp [ p ]
k=k−pr .∗ c i r c s h i f t ( eye (n) ,− i n t (n/2) )

+pr .∗ eye (n)
#take e i g
r e a l ( e i g ( k ) [ 1 ] [ 2 ] )

end
return pp , lam

end

In Fig. 3, the results of a 50 atom case are presented.2 For single defects,
the eigenvalue converges to the perfect case, while for long range disorder, a

2While the absolute values of the eigenvalues changed for larger matrices, the trends
did not.
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Figure 3: A sample result from a 1D chain.

discontinuity is observed like in the work of Radicchi and Arenas [7].
Trivial parallelism is used via the @parallel macro, since disorder is an

independent parameter. A comparison of the serial and parallel scalings as
function of matrix size is presented in Fig. 4.

This work is currently being extended to study real materials, specifically
bulk silicon with disorder being determined through the controlling the con-
centration of an alloying element like germanium. The objective is to express
the disorder parameter in terms of material properties.

3 Part 2

As an exercise in the history of science, the user obtained citation data from
the American Physical Society, which contains all citation pairs from within
the APS journal family from 1893 to 2009. This information can be repre-
sented as a directed graph, where the papers are the nodes and the citations
are the edges. This effort was inspired by Citerank, which is a pagerank appli-
cation to scientific articles, and Eigenfactor, which studies the connectedness
at the journal to journal level.
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Figure 4: A comparison of the wall time as a function of matrix. As expected,
the parallel approach is nearly four times faster than the serial version. The
speed up is independent for large matrix sizes.
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The user attempted to develop a parallel version of a breadth first search,
but the Graphs.jl package developed by Dahua Lin proved to be a much
better choice.

f unc t i on paper t r ee ( do i to , do i f rom )

g=a s d e s e r i a l i z e d (” graph . txt ”)
c i t i n g=readcsv (” unique . csv ”)

c=Dict {ASCIIString , Int } ( )
f o r i =1: l ength ( c i t i n g )
c [ c i t i n g [ i ] ]= i
end

#se t a l l d i s t an c e s to 1 , hack to use d i j k s t r a ’ s
d i s t s=ones ( num edges ( g ) )
r = d i j k s t r a s h o r t e s t p a t h s ( g , d i s t s , c [ do i f rom ] )

l=c [ d o i t o ]
pt={}

f o r d=1: r . d i s t s [ c [ d o i t o ] ]
l=r . parents [ l ]
push ! ( pt , s t r i n g (” http :// l i n k . aps . org / doi /” , c i t i n g [ l ] , ”\n”) )
end

return pt

end

As part of randomly walking with Julia, the user explored the current
status of web-related packages. While the user has no experience with web
development, the current breadth of Julia is exciting because it offers the
opportunity to venture outside one’s skill set without having to switch to
a different language. In the code snippet below, a simple HTTP service is
presented. The user provides the digital object identifier (DOI) of an APS
journal article in the URL and the response returns the trail of papers, if one
exists, to the 1964 paper by Peter Higgs.

us ing HttpServer
r e qu i r e (” nobel . j l ”)

http = HttpHandler ( ) do req : : Request , r e s : : Response
m = match ( r ”ˆ/ doi / ( . ∗ ) ” , req . r e s ou r c e )
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Figure 5: The number of papers in each subgraph.

i f m == nothing re turn Response (404) end
p=paper t r ee ( s t r i n g (m. captures [ 1 ] ) , ” 1 0 . 1 1 0 3 / PhysRevLett . 1 3 . 5 0 8” )
p r i n t l n (m. captures [ 1 ] )
r e turn Response ( s t r i n g (p ) )

end

http . events [ ” e r r o r ” ] = ( c l i e n t , e r r )−> p r i n t l n ( e r r )
http . events [ ” l i s t e n ” ] = ( port ) −> p r i n t l n (” L i s t en ing on $port . . . ” )

s e r v e r = Server ( http )
run ( se rver , 8000)

Currently, the graph and the unique list of papers are read in with each
call of papertree. For a real-time web application, this graph should to be
converted to a database. Lastly, the connected components of the citation
network were examined (ignoring the direction of time and using an undi-
rected graph). From Fig. 5, the vast majority (99.9%) of all papers in the
network are connected.
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4 Issues

Throughout this project, several issues were encountered. Upon upgrading to
the final version of Julia 0.2.0, the packages GnuTLS and Homebrew began
to throw errors. Using Julia’s package manager to remove, upgrade and add
these packages did not remove the error messages. After posting GnuTLS
issue 13 and Homebrew issue 30 on GitHub, the issue was deemed to be the
fault of the user and was resolved by deleting the .julia directory in the user’s
home directory and running Pkg.add(”Homebrew”).

Meanwhile, the user tested the new IJulia package for Sublime Text de-
veloped by Jacob Quinn. Through testing, it was determined that Mac OS
X requires a symlink to the ZMQ library.

Prior to discovering the HttpServer.jl package, the user attempted to use
the HTTP.jl. This package was developed for an earlier version of Julia and
required some maintenance. The user submitted a pull request to improve
compatibility with Julia 0.2.0.

Lastly, the user gained basic familiarity with the proposed SharedArray
pull request from Amit Murthy. The objective of this functionality is to
provide a data structure that can be accessed and manipulated across all
processes, accomplished through some low-level unix-system function calls.
This functionality will beneficial for the processing of large datasets.

5 Conclusions

Two studies using Julia are reviewed and the bugs and technical issues en-
countered along the way are discussed. In the first, the simplicity of harness-
ing trivial parallelism is shown. In the second, the Graphs.jl and HttpServer.jl
packages are used to look at the citation network of the American Physical
Society journal family.

The Julia experience was positive. The Julia community were responsive
and helpful and did not trivialize the questions asked. The user intends to
continue to learn and use Julia.
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Figure 6: Fiedler eigenvalues obtained using eigs.

Figure 7: A comparison of the wall time as a function of matrix using eigs.
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