A random walk with Julia

Sam Huberman

PhD Mech. Eng.

Part 1: Disorder in solids

- Phonons...
- Perturbative approach is standard, but is it valid?
- Is there a metric that establishes the validity of this approach?

Network approach

- Radicchi and Arenas looked at interconnected graphs
- Found an abrupt transition in the Fiedler eigenvalue.

doi:10.1038/nphys2761

1D case

• Find Fiedler eigenvalues of $\begin{pmatrix} L_1+pI & -pI \\ -pI & L_2+pI \end{pmatrix}$

Extend to real materials (more work to be done...)

In terms of parallelism

Parameter p is independent, allows for trivial parallelism

Part 2: How far are you from a Nobel paper?

- Look at a citation network (American Physical Society)
- 500000 vertices
- 4.5 million edges
- Attempted to set up a parallelized BFS, but Graphs.jl was much faster (seconds versus minutes to hours)

Hcat vs println

```
@parallel (hcat) for i=1:10; i; end
1x10 Array{Int64,2}:
1 2 3 4 5 6 7 8 9 10
But
@parallel for i=1:10; println(i); end
    From worker 7:
    From worker 7:
    From worker 9:
    From worker 8:
    From worker 10:
    From worker 3:
    From worker 2:
    From worker 6:
                   10
    From worker 4:
    From worker 5:
```

Why does heat order the elements in array?

Along the way

- Debugged HTTP.jl package, but used HttpServer.jl
- Tested the Sublime-Ijulia package with Jacob Quinn
- Currently helping debug the homebrew.jl package with Eliot Saba
- Tried SharedArray functionality by Amit Murthy

To sum up

- Looked at disorder in toy models
 - Need to recast the problem, look at real systems
- Looked at citation networks
 - Graphs.jl is a solid package