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Abstract. Cortical modeling is an area of research seeking to model
and simulate the cerebral cortex of the brain, which is of fundamental
importance to conscious thought and action. Computational power is a
major challenge in this �eld and the problem is inherently well-suited
to SIMD architectures. This suggests the implementation of a general-
purpose GPU framework for the development and execution of cortical
models, and indeed, several such frameworks do exist. However, they
su�er from hardware and software vendor lock-in and unnecessary as-
sumptions that limit the generality of the models they can execute. In
order to overcome these obstacles in preparation for anticipated future
work by the author and others, we have implemented a new cortical
modeling framework in OpenCL using PyOpenCL. The new framework
has several notable advantages: it is open-source, it does not su�er from
hardware or software vendor lock-in, it is cross-platform compatible, and
in principle it can simulate any model expressed as a message-passing ar-
chitecture on a de�ned graph of nodes grouped into atomically-executed
regions. Further, a given model requires only a minimal amount of C
code (using the industry-standard, vendor-neutral OpenCL C), with the
remainder written in Python. All overhead associated with managing
and executing the model is handled automatically by the framework.
The user need only specify the node algorithm(s), network layout, re-
gional execution order, and inter-node i/o de�nition, which are the es-
sential components of any cortical model. We have opted to name the
new framework �Phoenix�.

Part 1. Cortical Modeling

The cerebral cortex plays a central role in perception, representation,
memory, language, attention, and motor control. Indeed, it would be lit-
tle exaggeration to claim that it is the location of these functions [9, 13, 23,
41, 44, 53].

Further, the structure of the cortex is largely uniform, comprised of six
canonical layers organized into millions of narrow columnar structures con-
taining a particular pattern of feedforward and feedback connections between
neighboring columns and larger regions. While the relative strengths of many
regional connections are not yet known electrophysiologically and regional
variations in layer thickness do exist, the basic local structure and experimen-
tal evidence suggest a common algorithmic implementation with a relatively
small number of speci�c modi�cations across the cortex [38, 9, 52, 22].
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Cortical modeling, then, seeks to model and simulate the information-
processing operations undertaken within the cortex. This is generally at a
more abstract level than the attempted simulation of individual neurons.
The goals of the �eld lie primarily in improving the interpretation of results
from experimental neuroscience, developing a more complete understanding
of the brain, and contributing to the development of better arti�cial intelli-
gence systems [18, 22, 25, 12, 13, 33, 31, 36, 44, 45, 56, 63].

1. Cortical Modeling: Themes

A proposed cortical model for perception must be capable of explaining
various known properties from neuroscience and experimental psychology.
These key characteristics include online learning, hierarchical representa-
tions, spatial clustering, temporal clustering, feedback, prediction, dimen-
sionality reduction, and the gestalt properties of emergence, rei�cation, mul-
tistability, and invariance [18, 34, 60, 14, 13, 22, 25, 4].

Any putative cortical model must permit learning stored representations
from incoming examples at the same time the model itself is classifying
these examples. In machine learning parlance, this characteristic is known as
�online learning,� in contrast to �batch learning� methods that have separate
training and test phases or modes of operation [60, 36, 22, 25, 42].

The representation of stored information in a cortical model must be hi-
erarchical. It is clear from experimental data in neuroscience that the brain
has a physically hierarchical structure. A�erent connections convey sensory
information to the bottom layers of the hierarchy and it propagates up-
ward through successively higher regions of cortex, with various side paths
and bypass routes. Other experimental work has indicated that lower re-
gions store more elementary feature representations, while higher ones store
more complex and general ones. Correspondingly, the best-performing object
recognition systems use hierarchical architectures based around this principle
[18, 4, 63, 13].

Spatial clustering refers to the notion that inputs which are very similar
to one another should be combined into a single representation. Because
this occurs at all levels of the hierarchy, which corresponds to all levels
of stored feature complexity, very little meaningful representational ability
is lost. E.g., one cannot likely remember every single box of a particular
brand of cereal that one has ever seen, but such recall is rarely important
for any task. This process is also important in the development of invariant
�prototypes� of objects, e.g. the generic notion of a chair, which have a long
history of evidence in psychological and neuroscienti�c experiments [54, 55,
36, 22].

Temporal clustering means that the network stores common transition
patterns between sensory representations � e.g. motion of objects through
space, transformations of objects over time, etc. These patterns are likewise
stored in a hierarchical manner, and are associated with the corresponding
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spatial representations on multiple levels of abstraction. Note that spatial
and temporal clustering are relevant to sensory modalities other than vision
as well. For instance, if one has memorized a song, one has learned both
the chords in the song (spatial structure in frequency space, extracted by
the cochlea) and the speci�c transitions between these chords (temporal
structure in frequency space, the change in the spectrogram over time) [60,
22, 25, 36, 52, 41].

Feedback refers to the notion that higher-level representations provide
feedback signals to lower-level ones. The need for such feedback in a putative
cortical model is supported by neuroscienti�c evidence for cortical circuits
directed from higher regions of the brain to lower ones [9, 60, 4, 22]. From
a representational standpoint, feedback enables the completion of occluded
images, interrupted speech, etc. Cortical models implementing feedback in
this manner have improved tolerance for errors and noise [21, 43, 60]. A back-
and-forth process of constraint propagation between lower-level and higher-
level regions seeking a �match� could enable initially incomplete inputs to
trigger the corresponding higher-level representation in a manner similar to
auto-associative memories [10, 1, 60, 13, 22]. (We note as an aside that
this would correlate temporally with the feeling of attempting to recall the
speci�c structure of an entity one has nearly forgotten.)

Prediction is the consequence of feedback applied to temporal patterns as
opposed to spatial ones. This is because high-level spatiotemporal represen-
tations that provide feedback to lower-level ones can �prime� the lower-level
ones for anticipated incoming stimuli. Further, if these stimuli are not sub-
sequently present, the mismatch can act as a bottom-up signal for attention
[60, 51, 22].

Dimensionality reduction occurs because the network must learn sparse
features at multiple levels of abstraction from sensory inputs at the bottom
layer that are extremely high-dimensional. For instance, the retina has about
a hundred million photoreceptor cells, and even after these are consolidated
into the optic nerve there are still millions of distinct visual inputs. The low-
level region V1 of the visual cortex consolidates these into low-level features
such as edges and colored regions in particular locations across the entire vi-
sual �eld, which are then presented as inputs to higher-level regions, starting
with V2. These regions in turn recognize progressively more complex fea-
tures with progressively less positional and orientational speci�city, creating
a �space of representation� that extends e.g. from lines and colored regions,
to more complex intermediate shapes in V2 and V4, to representations of
individual characters invariant to size and font type in IT, to representations
for individual words in a language in higher regions. Note that a consider-
able amount of feedback is involved in search tasks and for ambiguous inputs,
e.g. distinguishing the identity of an illegible character based on the word
in which it appears [19, 60, 66, 13, 14, 23, 24].
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Figure 1. Gestalt Properties: Emergence. This image de-
picts an entity, the nature of which will not be discussed here.
Viewers not previously exposed to this image will note a sud-
den �ash of insight when the descriptive complexity of the
image is reduced by the realization of its high-level struc-
ture. This �emergence� of high-level structure from low-level
features is the �rst Gestalt property of perception.

2. Cortical Modeling: Themes: Gestalt Principles

Gestalt properties are well-known perceptual abilities from psychology
research on static images that any convincing cortical model must be capable
of explaining. The �rst is �emergence�: the notion that high-level features
must be able to �emerge� out of patterns in low-level features [34, 53, 60]. See
�gure 1 for a rather dramatic example, particularly if one has not previously
seen the image in question. (If one has viewed it and understood it in the
past, the memory of its high-level structure � likely at least partly within
the IT region of the visual cortex � causes one to immediately perceive it
directly instead of through a later, sudden �ash of insight.) We contend that
a hierarchical model with spatial clustering is su�cient to explain emergence.

The second Gestalt property of perception, rei�cation, refers to the ability
of the mind to �ll in the gaps in incomplete images and imbue them with
a spatial character [34]. See �gure 2 for sample images. We contend that a
hierarchical model with spatial clustering and feedback would be su�cient
to explain rei�cation [60, 44, 13].
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Figure 2. Gestalt properties: rei�cation. The images above
are all incomplete in some way, but the mind can complete
them. Image (A) might be perceived as a triangle, but it does
not in fact contain any triangle. Image (B) might appear akin
to a worm wrapped around a cylinder, but it does not contain
a complete image of the worm or even any three-dimensional
information. Image (C) might seem to depict a spiky sphere,
but again contains no three-dimensional information. Image
(D) could be perceived as a �sea serpent� on a body of water,
although again, no three-dimensional information is present,
nor is most of the �serpent� or even the water per se.

Multistability is the third Gestalt property of perception. Ambiguous
peceptions can have multiple mutually contradictory interpretations, each
of which is individually stable. This is illustrated more concretely in �g-
ure 3. As Lehar wrote, �The signi�cance for theories of visual processing
is that perception cannot be considered as simply a feed-forward process-
ing performed on the visual input to produce a perceptual output, as it
is most often characterized in computational models of vision, but rather
perception must involve some kind of dynamic process whose stable states
represent the �nal percept,� [34]. Indeed, we conjecture that the oscillatory
constraint-propagation phenomenon discussed above would explain multi-
stability. Stability would be characterized by a match between the inputs
from a lower-level unit to a higher-level one and the latter's feedback to the
former, as in, e.g., adaptive resonance theory or modi�ed versions of the
original hierarchical temporal memory model [10, 22, 60].

The fourth and most important Gestalt perceptual property is that of in-
variance. Invariance refers to the ability to identify objects in sensory input
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Figure 3. Gestalt properties: multistability. The �Necker
cube� on the left may be envisioned in one of two orienta-
tions in three dimensions. Both are stable, but one tends to
��icker� between them and can even choose to focus on one
or the other. (We conjecture that the latter is caused by top-
down attentional signals from regions of cortex above IT and
possibly above the association cortex.) Likewise, the image
on the right may be alternately perceived as a vase or as two
faces.

Figure 4. Gestalt properties: invariance. A) Object is ro-
tated, but still easily distinguished as identical. B) Versions
of object with rearranged parts are recognized as essentially
similar to object, but not identical. C) Warped and scaled
images are still clearly depictions of the same object. D)
Views of object drawn according to di�erent styles are still
understood to be identical.

even when they are perceived under di�erent conditions, orientations, trans-
formations, and so on. Figure 4 provides more concrete examples. Invari-
ance was the central focus of Gestalt theory, and has since become the cen-
tral focus of computational models for perception. Research by Fukushima,
Riesenhuber, and Poggio among others has convincingly demonstrated that
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hierarchical feedforward networks with spatial clustering or an equivalent op-
eration are su�cient to explain much of invariance, although work continues
on the development of e�ective models for three-dimensional transformations
[19, 60, 14, 44, 13].

3. Existing Cortical Models

A variety of models fall under the general classi�cation of cortical mod-
eling. Fukushima's neocognitron was one of the �rst [18, 20, 21]. Work by
Riesenhuber on the �HMAX� model, as well as later developments by him,
Serre, and Poggio do as well [56, 51, 61, 60, 45]. Miller and Lommel devel-
oped another model called the HQSOM [36]. George and Hawkins developed
two models called the �HTM,� the latter of which subsequently evolved into
a commercial product for video processing and the analysis of other large,
structured datasets [22, 25]. Deep-belief networks may also be viewed from
the standpoint of cortical modeling, although they are not as speci�c to cor-
tical functionality [27, 31, 32]. Many additional models beyond these have
been developed as well[63, 44, 13].

4. Gaps in Current Models

While many models have been constructed that exhibit some or even most
of these desirable qualities on some level, to date there exists no proposed
model that can demonstrate all of them to an extent commensurate with
that of the brain [44, 13, 63].

Meanwhile, viable extensions to such models to account for bottom-up
and top-down attentional modulation are very much a work in progress, and
at present some of the most successful models in the area rely on older,
non-hierarchical networks [67, 15, 17, 30, 44, 51, 63].

Hierarchical models for motor control, the relationship between re�exes
and voluntary motor control, and the relationship between innate or �instinc-
tual� motor responses and voluntary motor control remain likewise nascent
[29, 3, 6, 42, 57, 64].

Hierarchical models for the operant learning of motor control and top-
down attention, commonly bundled into the term �executive function,� are
a very active area of research, mostly centered on the application of rein-
forcement learning to hierarchical models. Working memory is often as-
sociated with them and is likewise much-debated. A large variety of re-
lated research is ongoing and a number of models have been proposed,
but less simulation and testing has been done than for perceptual models
[2, 5, 8, 7, 16, 26, 49, 50, 59, 65, 68].

Attempts to model episodic memory, emotional responses, the �consolida-
tion� of long-term memory, the emotional �tagging� of memories, and the ef-
fects of emotional tagging on memory consolidation within the context of low-
level cortical models appear somewhat less common, although many older
auto-associative models have been used. This may be related to the structure
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of the hippocampus itself, however, parts of which are known to have dense
networks of recurrent connections di�erent from those in the neocortex. Also,
a variety of conceptual models do exist in contrast to the reduced emphasis
on implemented computational work [2, 11, 28, 35, 37, 47, 48, 58, 62].

The vastness of the remaining research necessary to understand the brain
on an implementational level underscores the need for better tools and fur-
ther progress in the �eld.

Part 2. GPUs in Cortical Modeling

5. General-Purpose GPU Computing

Commodity graphics cards can now provide multiple tera�ops of (theoret-
ical, heavily optimization-dependent, rather memory-bound) compute power
for less than $200. This is a stark contrast to the present situation facing
CPUs, where di�culties with continued die shrinks and limited power scaling
have e�ectively begun to amend Moore's Law.

An array of general-purpose GPU computing architectures, of which NVIDIA's
CUDA was the �rst to reach mainstream status, has considerably simpli�ed
the task of writing scienti�c applications for execution by GPUs. OpenCL, a
more recent industry standard, permits generic GPU computing in a vendor-
neutral fashion and even extends support to CPU multiprocessing if needed.
The development of these toolchains and execution environments has permit-
ted numerous applications in scienti�c computing across engineering, geo-
physics, meteorology, physics, bioinformatics, computational �nance, and
numerous other areas of research.

However, the excellent prima facie performance-price ratio for GPUs comes
with a substantial limitation: they present compute resources in the form
of a small number (typically 10-32) of wide-SIMD processors (typical width
40-80 scalar elements, often further subdivided into vector units of 4 simi-
lar to SSE). See �gure 5 for an example. Until recently, NVIDIA relied on
a RISC architecture while ATI used a very long instruction word (VLIW)
architecture, but as of late 2011 ATI had switched to RISC and a greater fo-
cus on thread-level parallelism to further improve compute performance for
complex tasks and simplify the development of compilers and applications.

Also, double-precision �oating-point operations impose a substantial per-
formance penalty on cards that permit them, although newer architectures
have ameliorated this problem to some extent. Finally, memory bandwidth
can raise substantial challenges in GPU computing, particularly with respect
to transfers from main memory to on-card memory.

Consequently, only heavily parallel workloads are well-suited to GPU com-
puting, particularly those that can be easily framed as vector math, that do
not rely on double-precision �oating point operations, and that do not re-
quire signi�cant memory bandwidth to main RAM.
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Figure 5. A typical GPU architecture. This diagram de-
picts the ATI Radeon HD 6870 �Barts XT,� which was re-
leased on Oct. 22, 2010 and at the time of this writing can
be purchased for roughly $USD 160. It contains 1120 vertex
shaders, 56 geometry shaders, and 32 pixel shaders operat-
ing at 900MHz, for a combined hypothetical 2.016 tera�ops.
These resources are accessible across 14 distinctly-addressable
units, called simply �SIMDs� in Radeon parlance or �compute
units� in OpenCL. The 255 mm2, 40 nm process die contains
1.7 billion transistors. The newer HD 7970 �Tahiti XT� has a
2048:128:32 con�guration and 32 distinctly-addressable units,
achieves a hypothetical 3.788 tera�ops, and has a 352 mm2

28 nm process die with 4.313 billion transistors for $USD 420.

6. GPUs in Cortical Modeling

Conveniently, however, the brain is a massively-parallel system [38, 63].
More concretely, the cerebral cortex consists of a relatively small number of
regions that each contain a very large number of cortical microcolumns, all
of which operate in parallel and send information upward, downward, and
laterally within the hierarchy's layers [38, 60, 22]. Further, as a biological

9



GPGPU-BASED CORTICAL MODELING Theodore Hilk

system with a high degree of redundancy, extreme tolerances in internal
representations and output actions are a non-issue to the extent that they
are not introduced as a requirement by one's choice of implementation and
numerical methods.

Examining these characteristics in turn from the standpoint of a corti-
cal model, we note that most clustering algorithms and various simpler,
special-purpose approximations used in cortical modeling consist entirely of
vector arithmetic [44, 22, 21, 36]. Further, an execution approach based on
simulating modeled cortical layers in turn on the GPU (as a stand-in for
simultaneous operation within the biological system) would be required to
wait until all layers had a chance to execute before beginning work on the
input for the next time step. This bodes well for memory bandwidth. Thus,
we conclude that general-purpose GPU computing is well-suited to cortical
modeling.

7. Existing GPGPU Cortical Modeling Frameworks

Two major frameworks for the simulation of cortical models on GPUs cur-
rently exist. The �rst, CNS, was developed in 2009. It is written in Matlab,
so the software necessary to use it is not free or open-source. As an aside, the
author prefers Python to Matlab regardless, but reader preferences may like-
wise vary. CNS also relies on NVIDIA's proprietary CUDA architecture, so
it cannot run on ATI GPUs. This particularly unfortunate since ATI GPUs
have historically performed better than NVIDIA ones on compute-bound
workloads like those generated by most cortical modeling applications, al-
though this is subject to ongoing technical developments [46].

CNS automatically performs a considerable number of host-GPU memory
transfers with no direct control by the user, which could conceivably become
problematic in light of memory bandwidth concerns. This is of particu-
lar concern for consumer-grade cards, which are approximately an order of
magnitude cheaper than specialized ones but have poorer host-GPU memory
bandwidth at a given level of computing power. It also double-bu�ers inter-
node i/o on the assumption that users might otherwise make mistakes, which
consumes additional memory. Also, CNS does not support double-precision
�oating-point operations even if needed by a given model [46].

Finally, the framework imposes a variety of assumptions on network struc-
ture that can limit the generality of the models one might seek to implement,
the somewhat complex and multifaceted details of which will not be discussed
at great length here. At a high level, to summarize, the framework largely
assumes individual cells to have the same connectivity structure, regions to
be uniform and regular, execution order to follow one of a small number of
preset patterns, and networks to fall within one of a small number of classes
that a�ect the nature of these constraints. Some mitigations exist, but they
are incomplete. Overall, CNS was the �rst of its kind, was subject to the
architectural limitations and library availability of 2009, and was designed

10



GPGPU-BASED CORTICAL MODELING Theodore Hilk

for researchers who do not need full generality. The authors noted many of
the limitations above, but some simply could not be easily circumvented at
the time [46].

The second framework does not appear to have a name, but was developed
by Nere et. al. at the University of Wisconsin�Madison in 2010. This
framework is likewise dependent on CUDA. It also imposes much stricter,
quasi-biological constraints on the models being simulated. The framework
does not appear to be designed for other researchers to be able to use it for
more general work than the model that its author had in mind. Indeed, in a
later, 2012 paper, the additional applications discussed did not rely on the
original framework at all, so it was speci�c to the particular model in question
at that point. However, this did permit Nere to conduct a substantial amount
of performance optimization, some of which would have been incompatible
with a more general layout. Nere also wrote a runtime pro�ling tool that is
not present in CNS or the model we developed [40, 39].

Overall, existing GPGPU cortical modeling frameworks lack cross-platform
compatibility, the ability to script execution without resorting to non-free
software, and most importantly a signi�cant level of modeling generality.
The latter is particularly useful for the development of new cortical models
that may not adhere to the same constraints as prior work.

Part 3. Project Overview

8. Prior Work: 6.867 Final Project

For a �nal project in a previous class, the fall 2011 iteration of 6.867
Machine Learning, the author collaborated with fellow student Joseph Lynch
to implement the HQSOMmodel fromMiller and Lommel 2006 [36]. We were
interested in this model because, unlike HMAX and almost all of the other
cortical models we surveyed at the time, it performed temporal clustering
and did not rely on a hand-created feature dictionary [36, 60]. The only other
model we found that met these constraints was the second version of HTM,
but we considered it too complex and unwieldy compared to the HQSOM
and had read that it sometimes failed to generalize well [25, 22].

During our project work, we implemented the network as described in the
paper and successfully replicated its authors' results on several visual clas-
si�cation tasks. We made a variety of improvements to the algorithm itself
in the process, including the use of a mean-squared-error-based activation
function to improve performance in the presence of noise, a peripherally-
inhibitory �Mexican hat� neighborhood function to enhance competitive learn-
ing, an adaptive learning rate and neighboorhood function bandwidth to
reduce the amount of time required for training, and a �reset� function to
increase the e�ciency of the training process.

We then extended the model to audio classi�cation. We preprocessed au-
dio �les with a windowed fast Fourier transform to generate spectrograms,
motivated by the well-established notion from neurology that the cochlea of
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the inner ear performs something very much akin to an FFT prior to relaying
signals via the cochlear nerve. We also constructed a di�erent network topol-
ogy with a one-dimensional input space to match that of the spectrogram
and three layers instead of two for longer sequence memory, then fed the
spectrogram line by line into the model as input. After �playing� one song
from each of three musical genres to the network in this manner, we tested
its performance in classifying three di�erent songs from the same respective
genres. Classi�cation was successful in each case.

However, trials were still very time-consuming in spite of our modi�ca-
tions. For a single-threaded implementation of the algorithm in numpy, the
required training cycles for one of the visual classi�cation tasks took several
hours on a state-of-the art CPU at the time. We were able to run multi-
ple training cycles for parameter sensitivity studies on separate cores, but it
would have been more useful to run the trials in series if we had been able
to do so quickly. Computational di�culties limited our ability to apply the
network to more ambitious learning and classi�cation problems, or even to
perform more extensive experiments with our audio system. It became clear
to us that a suitable GPU framework would be a practical necessity in order
to work on more complex networks, learn a larger set of representations, or
experiment with other modeling approaches.

9. 6.338/18.337 Project Overview

In order to overcome the aforementioned obstacles and the limitations of
other GPU frameworks as noted above, the author has implemented a new
cortical modeling framework in OpenCL using PyOpenCL, called �Phoenix�.
This platform has several key advantages: it is open-source and written in
a language that is in turn open-source, it does not su�er from hardware or
software vendor lock-in, it is cross-platform compatible, and in principle it
can simulate any model expressed as a message-passing architecture on a
de�ned graph of nodes grouped into atomically-executed regions. Further, a
given model requires only a minimal amount of C code (using the industry-
standard, vendor-neutral OpenCL C), with the remainder written in Python.

All overhead associated with managing and executing a given model is
handled automatically by the framework. The user need only specify the
node algorithm(s), network layout, regional execution order, and inter-node
i/o de�nition, which are the essential components of any cortical model. It
is our sincere hope that this simulation environment will be useful in both
our own future work in the area and that of others who may have found
themselves limited by existing solutions.

10. The Node Representation

Nodes in Phoenix are implemented as subclasses of a generic parent �Model�
class. This class contains an __init__() method to handle setup and var-
ious utility methods used for inter-node i/o and certain interactions with
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PyOpenCL. Alltogether, these methods handle all aspects of feedforward
and feedback i/o between nodes according to de�ned input and output sizes
for both feedforward and feedback (any of which may be zero if not used)
and references to its parent and child nodes (either of which may be empty
if not present). In more detail:

The __init__() method acquires the OpenCL context and queue, obtains
a reference to the target device, looks up and applies appropriate build op-
tions, computes and stores o�sets for i/o bu�ers for child and parent nodes,
and allocates the necessary on-device bu�ers. It then calls load_kernels().

The load_kernels() method reads the kernels speci�ed for a given model
subclass from the appropriate �les, loads the kernels into the OpenCL con-
text, and builds them.

The collect_input() method populates the feedforward and feedback in-
put bu�ers from child and parent nodes respectively, keeping all operations
in GPU memory. Note that if double-bu�ering similar to that in CNS is
desired, the user must include it in the internal bu�er structure of his or her
model. The author did not wish to apply this procedure by default due to
the resulting increase in memory requirements.

The execute() method is de�ned by the subclass, but should always start
by calling collect_input().

On a di�erent note, a generic �InputModel� class is also included to as-
sist in reading vector input data into the network from an external source.
These could include images, pre-processed feature activation vectors, video
frames, audio spectrograms, datasets from which one is trying to learn some
structure, etc.

11. The Layout Manager

While all nodes can specify their connectivity patterns independently, the
layout manager includes Network and NetworkRegion classes for de�ning the
higher-level structure of the network.

A Network is the top-level abstraction for the entire network of nodes.
It contains a list of NetworkRegion instances, and is the appropriate loca-
tion for functionality involving e.g. network status monitoring, performance
monitoring, etc. It is designed to permit inheritance by speci�c models for
model-implementation-dependent features.

A NetworkRegion is the atomic unit of execution in Phoenix. All Model
instances within a given NetworkRegion instance will be executed between
barrier applications on the GPU, so no timing guarantees within a Net-
workRegion can be provided and NetworkRegion execution should be con-
sidered all-or-nothing. The NetworkRegion abstraction is the most funda-
mental contributing factor to the ability of cortical models in Phoenix to be
executed e�ciently on GPUs.

A NodeTypeDef is a class used to represent the class identities and i/o
con�gurations of nodes. This could be used to facilitate the construction of
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networks with many copies of the same types of nodes without needing to
include routines to con�gure them within the network-building code.

12. The Execution Manager

The execution manager is responsible for executing models in Phoenix on
the GPU (or, hypothetically, any other OpenCL compute device including
the CPU).

Execution order for a given model is speci�ed with a list of references
to regions in the order in which they should be executed. The execution
manager then simply loops through the list, executing each region in turn
and separating them with OpenCL barriers to ensure synchronization. The
execution of a region simply involves executing each individual node within
that region, using the node execute() method discussed above.

Because model computation is performed on the GPU, there is enough la-
tency between successive waves of node executions for the execution manager
to queue up additional work to follow. This is arguably one of the central
bene�ts of PyOpenCL: because of this latency and PyOpenCL's own im-
plementation optimizations, such management can be done in a convenient
scripting language with no performance penalty whatsoever.

13. Other Utilities

A device information script is included to simplify OpenCL con�guration
and any related troubleshooting. This script can also be helpful in better
understanding device capabilities.

A few examples of OpenCL kernels and the use of some of the more basic
abstractions in PyOpenCL are included as well.

14. Potential Framework Extensions

Support for multiple GPUs has not yet been implemented, but is planned
for the near future and should not prove too challenging. Support for dis-
tributed clusters is another possibility, although the author notes that inter-
connect bandwidth and latency could begin to impose nontrivial constraints
on network design.

With su�cient metaprogramming e�ort, some of the contents of the node
__init__() method could potentially be hard-coded into the kernels asso-
ciated with a given algorithm. The author has not yet fully investigated this
possibility, but it could perhaps yield performance improvements.

In general, further convenience methods could be included (e.g. an op-
tional generic network factory that could be used if desired to build a network
given a parametric representation of its connectivity structure and node class
composition, perhaps a generic double-bu�ering implementation if feasible
without violating design principles), as could additional examples. We antic-
ipate developing some of these things over the course of our own subsequent
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work with the framework, since this will show us which of them might be
most useful in pursuing it.

Finally, it has recently come to the attention of the author that the present
implementation of Phoenix does not permit lateral connectivity within a
region. Although very few cortical models include direct lateral connectivity,
it is known to be present in the cerebral cortex. The author hopes to remedy
this matter within the coming weeks.

Part 4. Conclusion

�In this City's center, a thing grows, an auto-catalytic tree, in almost-
life, feeding through the roots of thought on the rich decay of its own shed
images, and ramifying, through myriad lightning-branches, up, up, toward
the hidden light of vision,�

� Gibson and Sterling, The Di�erence Engine
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