GPGPU-Based Cortical Modeling

Brains on a Budget
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Cortical Modeling Overview

Modeling and simulating
the cerebral cortex

Why?
— Center of memory,

attention, language,
conscious thought....

Goals:

— Understand experimental
neuroscience data better

— Build improved Al systems
Challenges:
— Model accuracy

— Model generality
— Computational power




Project Rationale

CEREBRAL CORTEX

* Problems: e s
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e Solution:

— Create a vendor-neutral
GPGPU framework for
cheap access to high-
performance computing

— Use it to work on new
cortical models (6.UAP)
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HMAX

Poggio, Serre (MIT CBCL) |
Model specifically for Q
visual cortex TN

Alternating layers of S = W
(selectivity) and C a A A A
(combination) units, with SRR
MAX operations in the C VL WAWARNY
units to pool over inputs ENCIOHO
Includes human-created \W 1/ //
features AN/

image
Performance on par with

the best computer vision
systems; rivals human
evaluators

1 AL

Fignre 10 The HMAX model.



HMAX

View=tuned units (VTUs). Ex: face units

C2 units

S2 units
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————— MAX operation
«+—— Linear summation

Serre, T., and Riesenhuber, M. (2004)

Alternating layers of S (selectivity) and C (combination) units,
with MAX operations in the C units to pool over inputs



George, Hawkins
(Numenta)

Alternating layers of
temporal and spatial
poolers

Complex, pseudo-

biological “neurons” with
specific connectivity and

activation properties

Sequence-based local cell

memories

Generality can be poor;

learned results often
“brittle”
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Remembering spatial patterns over a length of time.
Most common patterns are remembered.



HQSOM

Miller, Lommel (Draper)
Hierarchical quilted self-
organizing map
Comprised of pairs of self-
organizing maps (SOMs)
wired into recurrent
SOMs (RSOMs).

SOM handles spatial
feature representation

RSOM handles temporal
features, i.e. transitions

More general than HMAX;
less complex than HTM
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Gaps in Current Models

Frequently not on-line
Inadequate emphasis on

feedback and prediction

Lack of motor output

— Corresponding lack of
operant learning |
) ¥

Absence of reflexes i
Lack of attention regulation _Ml/
Lack of emotional responses | \Q/

&

Primary Association Primary
sensory cortex cortex motor cortex

Absence of clarity regarding v ; f( v
episodic memory storage w# 4l

Do not account for

heterogeneities in cortical
structure

Active areas of research!



GPU Supercomputing

Graphics Engine | bl

Cheap teraflops from
commodity graphics cards

Massively SIMD

General-purpose parallel
programming libraries

— NVIDIA: CUDA

— ATI: CAL/Brook+/Stream
— Open standard: OpenCL

Extensive developer
communities
Applications in physics,
biology, finance....
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Existing GPGPU
Cortical Modeling Frameworks

* Very few examples, e.g.:
— CNS - Poggio 2009
— Nere et. al. 2012

e All previous frameworks
based solely on CUDA

— Vendor lock-in — NVIDIA

— Particularly unfortunate;
ATI cards often superior
for compute-bound
workloads

e Existing tools also
impose extra model
assumptions/ overhead
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Figure 3. An example of an HMAX model (see section 2.2). Each
step 15 pertormed at multiple scales, only three of which are shown
here

CNS network for an example HMAX model



Prior Work

Techno Classical Rock
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— Implemented HQSOM in | = i
Python (single-threaded) J ... .= | . =«
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Project Overview

Implement OpenCL GPU
framework for general
network cortical models

Implement HQSOM using
this framework

Further extend HQSOM
to automate parameter
tuning, time permitting
and later for 6.UAP

Try other clustering
methods later for 6.UAP

Your Model Could be Here!




GPU Framework

e Model Implementation

— Node state: on-GPU buffers

— Algorithms: OpenCL kernels

— Inter-node i/o: specific i/o buffers

— Everything stays on GPU!
 Layout Manager

— Nodes, regions, networks

— Feedforward and feedback links

 Execution Manager

— Node “execute()” method fetches
input, runs kernels, caches output

— Region-wise execution — no need
for ordering guarantees

— Appropriate use of barriers for
synchronization with minimal
performance impairment

— Manage GPU resources and
scheduling with PyOpenCL!




PyOpenCL

or: “How | learned to stop worrying and love the GPU”

T

S /AR

e (Edited from the website—) PyOpenCL lets you access the OpenCL parallel
computation API from Python. Here's what sets PyOpenCL apart:

— Object cleanup tied to lifetime of objects. This idiom, often called RAIl in C++,
makes it much easier to write correct, leak- and crash-free code.

— Completeness. PyOpenCL puts the full OpenCL API at your disposal, if you wish.

— Convenience. While PyOpenCL's primary focus is to make all of OpenCL accessible,
it tries hard to make your life less complicated as it does so—without shortcuts.

— Automatic Error Checking. All OpenCL errors are automatically translated into
Python exceptions.

— Speed. PyOpenCL's base layer is in C++, so the niceties above are virtually free.
— Helpful, complete documentation and a wiki.
— Liberal licensing (MIT).



PyOpenCL

or: “How | learned to stop worrying and love the GPU”

Blazing-fast parallel infrastructure
+

Convenient management scripting

WIN



HQSOM (Re-)Implementation

* Pre-existing Python
code for HQSOMs from
6.867 final project

 Must port to a set of
OpenCL kernels and
intermediate buffers

— Everything else handled
by node superclass

— i.e. only need to port the
SOM-RSOM pair code

 Then simply plug nodes
into network framework




Potential Model Extensions

e Automate parameter
tuning for the HQSOM
— adaptive sigma
— adaptive gamma

* |nvestigate other models,
clustering techniques
beyond SOMs
— density-based clustering

— information-theoretic
clustering approaches

— fuzzy extensions thereof
— deep belief networks?
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Conclusion

Implementing a vendor-neutral GPGPU
solution for cortical modeling

Cortical modeling well-suited to massive SIMD
parallelism of GPGPU platforms

Substantial computational speed-up permits
faster simulations/trials, larger networks

Implications for both neuroscience and
biologically-inspired artificial intelligence



