
Parallel Cell-Based Finite element test with
Dealii

Stephen O’Sullivan

MIT Kavli Institute for Astrophysics and Space Research

December 10 2012

Stephen O’Sullivan Finite Element



Outline

Stephen O’Sullivan Finite Element



Punchline

Want to discretize some continuous differential operator
Typical Finite element method

Construct sparse matrix
Solve using linear algebra engines

Stephen O’Sullivan Finite Element



Finite element method

Parameterize geometry

Divide structure in simple (unstructured) cells
Enables us to perform integrations and define basis
functions

Build basis functions (polynomials on the cells)

Continuous
Simple derivatives
Easy to integrate over cells

Solve Lu = b for some sparse matrix L

Stephen O’Sullivan Finite Element



Matrix-free vs sparse matrix

IDEA: Main memory is bottle neck for scientific computing (big
grids which do not fit in cache) - Substitute looking up matrix
elements in memory by re-computing them. Access the matrix
by evaluating matrix-vector products.
Don’t assemble a global sparse matrix Instead only store

the unit cell shape function information
the enumeration of the dofs (vertices of mesh)
transformation from unit cell to real cell

Arrange operations such that successive Matrix-Vector
operations are performed → less memory transfer during
computations

Stephen O’Sullivan Finite Element



Matrix-free class in Dealii

MPI parallelization on clusters of distributed nodes

Domain decomposed into subdomains of equal size and
assigned to individual processors.
Each processor holds a coarse mesh on the entire domain
Data associated to dofs on the subdomain boundaries are
available to all processors involved.

Stephen O’Sullivan Finite Element



Thread parallelization scheduled by Threading Building Blocks
library

Subdivide cells into subdomains with precomputed
neighbor relations
Use Intel Threading Building Blocks to schedule tasks
dynamically in such a way that no neighboring cells are
worked on simultaneously. (Color graph problem: No two
adjacent cells with the same color).
Algorithm:

1 Partition domain such that cells belonging to partition k at
most overlap with partitions k-1,k,k+1 so that all even/odd
partitions are independent

2 Within each partition subdivide the cells following the same
strategy as in part (1)

Stephen O’Sullivan Finite Element



Vectorization by clustering of two or more cells into a SIMD
data type for operator application

Custom vectorization within the CPU (SIMD)
Operations are typically the same on all cells

Stephen O’Sullivan Finite Element



Scaling with number of nodes

1 2 3 4 5 6 7 8
Number of Nodes --->

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

W
al

l C
lo

ck
 T

im
e 

pe
r S

te
p 

---
>

dim = 3; fe_deg = 6
dim = 3; fe_deg = 4
dim = 3; fe_deg = 3
dim = 3; fe_deg = 1

Stephen O’Sullivan Finite Element


