Parallel Video Processing

Neal Wadhwa

December 10, 2012

Parallel Video Processing

» Processing is on uncompressed video

Parallel Video Processing

» Processing is on uncompressed video

> Uncompressed videos uses huge amounts of space.

Parallel Video Processing

» Processing is on uncompressed video
> Uncompressed videos uses huge amounts of space.

» 1080p at 30 FPS is one gigabyte per second

Parallel Video Processing

v

Processing is on uncompressed video

v

Uncompressed videos uses huge amounts of space.

v

1080p at 30 FPS is one gigabyte per second

v

Lots of algorithms are easy to parallelize due to independence
of processing in space or time.

Example: Motion Magnification

» DSP based method to magnify subtle motions

Example: Motion Magnification

» DSP based method to magnify subtle motions

» Here are some cool examples of motion magnification.

Example: Motion Magnification

» DSP based method to magnify subtle motions
» Here are some cool examples of motion magnification.

» Switch to video.

Example: Motion Magnification

v

DSP based method to magnify subtle motions

v

Here are some cool examples of motion magnification.

v

Switch to video.

v

FFT-based algorithm lends itself to being parallelized.

Example: Motion Magnification

v

DSP based method to magnify subtle motions

v

Here are some cool examples of motion magnification.

Switch to video.

v

v

FFT-based algorithm lends itself to being parallelized.

v

Try to parallelize and see how far we can get

Outline of algorithm - three stages

» 1. Spatially decompose each frame.

Outline of algorithm - three stages

» 1. Spatially decompose each frame.

» 2. Temporally process each pixel in each decomposition level

Outline of algorithm - three stages

» 1. Spatially decompose each frame.
» 2. Temporally process each pixel in each decomposition level

» 3. Reconstruct each frame

Outline of algorithm - three stages

v

1. Spatially decompose each frame.

v

2. Temporally process each pixel in each decomposition level

3. Reconstruct each frame

v

v

Every stage is easy to parallelize individually

Outline of algorithm - three stages

v

1. Spatially decompose each frame.

v

2. Temporally process each pixel in each decomposition level

3. Reconstruct each frame

v

v

Every stage is easy to parallelize individually

v

Serial algorithm takes several hours on high resolution videos.

Outline of algorithm - Spatial Decomposition

» Say you have frames Fy,..., F,

Outline of algorithm - Spatial Decomposition

» Say you have frames Fy,..., F,

» Decompose each frame into different spatial bands
F,' — (D,"l, ey D,',k)

uses k times as much space as the original frame.

Outline of algorithm - Spatial Decomposition

» Say you have frames Fy,..., F,

» Decompose each frame into different spatial bands
F,' — (D,"l, ey D,',k)

uses k times as much space as the original frame.

» Decomposition is performing by FFT, multiplying by filters
and applying IFFT

Dij = FHT; x F{Fi}}

Outline of algorithm - Spatial Decomposition

» Say you have frames Fy,..., F,

» Decompose each frame into different spatial bands
F,' — (D,"l, ey D,',k)

uses k times as much space as the original frame.

» Decomposition is performing by FFT, multiplying by filters
and applying IFFT

Dij = FHT; x F{Fi}}

» Transform is invertible.

Outline of algorithm - Spatial Decomposition

» Create decomposition
for every frame

Outline of algorithm - Spatial Decomposition

» Create decomposition
for every frame

Outline of algorithm - Spatial Decomposition

» Create decomposition
for every frame

Orientations

u]
o)
I
i
it

Outline of Algorithm

> For every pixel in every level, values contain motion signal

o
@3
Time (t)

Froquency ()

Outline of Algorithm

» Bandpass from 100 Hz to 120Hz
» Add bandpassed signal to original signal

750 200 20 0 3 E) 100 750
Time (t) Time (t)

Bandpass 100-120 Hz Magpnified)

Outline of Algorithm

» Bandpass from 100 Hz to 120Hz
» Add bandpassed signal to original signal

Tin‘\ﬁe‘7 (t) ” “ * ’ ” ” Tin"lﬁe‘7 (t)
Bandpass 100-120 Hz Magpnified)
» Amplifies only selected frequency

Easy to Parallelize

> Parallelize spatial decomposition over frames

Easy to Parallelize

> Parallelize spatial decomposition over frames

> Parallelize temporal filtering over pixels.

Easy to Parallelize

> Parallelize spatial decomposition over frames
> Parallelize temporal filtering over pixels.

» Difficulty lies in how to store data over cores.

Matlab vs. Julia

» Relatively easy to port code to Julia

Matlab vs. Julia

Relatively easy to port code to Julia

Compare serial performance of matlab vs. julia at different
image sizes.

. Comparison of Serial Matlab and Julia Code
10 T T T

Running Time
3,
|
.

ol L L L

10°
Frame Size in Pixels

Matlab vs. Julia

Relatively easy to port code to Julia

Compare serial performance of matlab vs. julia at different
image sizes.

. Comparison of Serial Matlab and Julia Code
10 T T T

Running Time
3,
|
.

10'5 L L L ,
10° 10’

10°
Frame Size in Pixels

» Julia is slightly slower, but comparable.

Matlab vs. Julia

Relatively easy to port code to Julia

Compare serial performance of matlab vs. julia at different
image sizes.

. Comparison of Serial Matlab and Julia Code
10 T T T

Running Time
3,
|
.

10 I I I
10° 10* 10° 107

Frame Si"/?o in Pixels
» Julia is slightly slower, but comparable.
Not surprising since main processing occurs in ffts (in libfftw).

Matlab vs. Julia

» Relatively easy to port code to Julia
» Compare serial performance of matlab vs. julia at different
image sizes.

. Comparison of Serial Matlab and Julia Code
10 T T T

Running Time

10 I I I
10° 10°

Frame SI‘ID(in Pixels
» Julia is slightly slower, but comparable.

» Not surprising since main processing occurs in ffts (in libfftw).
> Uses 400 GB at largest problem size, 1600x1600x300.

Matlab Parfor

» Parfor gives factor of two improvement when used with 12
cores.

Matlab Parfor

» Parfor gives factor of two improvement when used with 12
cores.

» Parfor processing on frames and on temporal processing

Comparison of Serial Matlab and Matlab with parfor
T

10 T T
3 El
E ot E
5
@0
£ 0'E E
10"k E
—— Serial Matlab
parfor Matla
10° L L |
10° 10 10° 10

10°
Frame Size in Pixels

Matlab Parfor

» Parfor gives factor of two improvement when used with 12
cores.
» Parfor processing on frames and on temporal processing

Comparison of Serial Matlab and Matlab with parfor
T T T

aw
|

am
|

Running Time

—— Serial Matlab
))) parfor Matla
10

10° 107

10°
Frame Size in Pixels

» Only 2x improvement

Julia spawnat vs. Matlab parfor

» Parllelize the spatial decomposition and reconstruction in Julia

Julia spawnat vs. Matlab parfor

Parllelize the spatial decomposition and reconstruction in Julia
Faster than serial Julia for large problem size.

. Comparison of Serial Matlab and Matlab with parfor
10° T T T

Running Time
3,
|
.

10" E
——parfor Matlab
—Serial Julia
.) Parallelize Spatial Decomposition in Jul]
10 T T
10° 10* 10° 10

10°
Frame Size in Pixels

Julia spawnat vs. Matlab parfor

Parllelize the spatial decomposition and reconstruction in Julia
Faster than serial Julia for large problem size.

. Comparison of Serial Matlab and Matlab with parfor
10 T T T

Running Time

parfor Matlab
—Serial Julia
Parallelize Spatial Decomposition in Juljp

10° 10°

10° 10° 10
Frame Size in Pixels

» The spatial decomposition is extremely fast, but reordered
data for temporal filtering is very, very slow.

Julia spawnat vs. Matlab parfor

Parllelize the spatial decomposition and reconstruction in Julia
Faster than serial Julia for large problem size.

. Comparison of Serial Matlab and Matlab with parfor
10 T T T

Running Time

parfor Matlab
—Serial Julia
Parallelize Spatial Decomposition in Juljp

o I
10° 10°

10° 10° 10
Frame Size in Pixels

» The spatial decomposition is extremely fast, but reordered
data for temporal filtering is very, very slow.
» In serial code, temporal processing uses 14% of time.

Julia spawnat vs. Matlab parfor

Parllelize the spatial decomposition and reconstruction in Julia
Faster than serial Julia for large problem size.

. Comparison of Serial Matlab and Matlab with parfor
10 T T T

Running Time

parfor Matlab
—Serial Julia
Parallelize Spatial Decomposition in Juljp

o I
10° 10°

10° 10° 10
Frame Size in Pixels

» The spatial decomposition is extremely fast, but reordered
data for temporal filtering is very, very slow.
In serial code, temporal processing uses 14% of time.
In parallel code, temporal processing uses 50% of time.

Change processing to use 3-tap primal domain temporal
filter

> Makes temporal processing more local to avoid
communication overhead.

Change processing to use 3-tap primal domain temporal
filter

> Makes temporal processing more local to avoid
communication overhead.
» Store temporally close pixels on same processors

Comparison of Serial Matlab and Matlab with parfor
T T T

10t
10°E
4
I
10"
—— parfor Matlab
Serial Julia
.)) ——3Tap Filter instead of FF'
10 T
10° 10 10° 107

10°
Frame Size in Pixels

Change processing to use 3-tap primal domain temporal
filter

> Makes temporal processing more local to avoid
communication overhead.
» Store temporally close pixels on same processors

. Comparison of Serial Matlab and Matlab with parfor
10 T T T

Running Time
3,
.

Serial Julia
——3Tap Filter instead of FF'

10° 107

——parfor Matlab :l

10° I I
10° 10*

10°
Frame Size in Pixels

» 2.5x faster than Matlab, 5x faster than serial Julia

Change processing to use 3-tap primal domain temporal
filter

> Makes temporal processing more local to avoid
communication overhead.
» Store temporally close pixels on same processors

. Comparison of Serial Matlab and Matlab with parfor
10 T T T

Running Time
3,
|
.

10" e

Serial Julia
——3Tap Filter instead of FF'

——parfor Matlab :l

10° I I
10° 10*

10° 10° 107
Frame Size in Pixels

» 2.5x faster than Matlab, 5x faster than serial Julia
» Matlab parfor fails to capitalize on this

