Neal Wadhwa

December 10, 2012

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Processing is on uncompressed video

- Processing is on uncompressed video
- Uncompressed videos uses huge amounts of space.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Processing is on uncompressed video
- Uncompressed videos uses huge amounts of space.

1080p at 30 FPS is one gigabyte per second

- Processing is on uncompressed video
- Uncompressed videos uses huge amounts of space.
- 1080p at 30 FPS is one gigabyte per second
- Lots of algorithms are easy to parallelize due to independence of processing in space or time.

DSP based method to magnify subtle motions

- DSP based method to magnify subtle motions
- Here are some cool examples of motion magnification.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- DSP based method to magnify subtle motions
- Here are some cool examples of motion magnification.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Switch to video.

- DSP based method to magnify subtle motions
- Here are some cool examples of motion magnification.
- Switch to video.
- FFT-based algorithm lends itself to being parallelized.

- DSP based method to magnify subtle motions
- Here are some cool examples of motion magnification.
- Switch to video.
- FFT-based algorithm lends itself to being parallelized.

Try to parallelize and see how far we can get

▶ 1. Spatially decompose each frame.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- ▶ 1. Spatially decompose each frame.
- > 2. Temporally process each pixel in each decomposition level

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- ▶ 1. Spatially decompose each frame.
- > 2. Temporally process each pixel in each decomposition level

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

3. Reconstruct each frame

- ▶ 1. Spatially decompose each frame.
- > 2. Temporally process each pixel in each decomposition level

- 3. Reconstruct each frame
- Every stage is easy to parallelize individually

- ▶ 1. Spatially decompose each frame.
- > 2. Temporally process each pixel in each decomposition level
- 3. Reconstruct each frame
- Every stage is easy to parallelize individually
- Serial algorithm takes several hours on high resolution videos.

(ロ)、(型)、(E)、(E)、 E) の(の)

Say you have frames F_1, \ldots, F_n

Say you have frames F_1, \ldots, F_n

Decompose each frame into different spatial bands

$$F_i \rightarrow (D_{i,1},\ldots,D_{i,k})$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

uses k times as much space as the original frame.

Say you have frames F_1, \ldots, F_n

Decompose each frame into different spatial bands

$$F_i \rightarrow (D_{i,1},\ldots,D_{i,k})$$

uses k times as much space as the original frame.

 Decomposition is performing by FFT, multiplying by filters and applying IFFT

$$D_{i,j} = \mathcal{F}^{-1}\{T_j \times \mathcal{F}\{F_i\}\}$$

Say you have frames F_1, \ldots, F_n

Decompose each frame into different spatial bands

$$F_i \rightarrow (D_{i,1},\ldots,D_{i,k})$$

uses k times as much space as the original frame.

 Decomposition is performing by FFT, multiplying by filters and applying IFFT

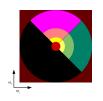
$$D_{i,j} = \mathcal{F}^{-1}\{T_j \times \mathcal{F}\{F_i\}\}$$

Transform is invertible.

 Create decomposition for every frame

(日)、

 Create decomposition for every frame

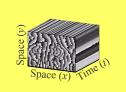


イロト イポト イヨト イヨト

э

 Create decomposition for every frame

Levels



 Orientations

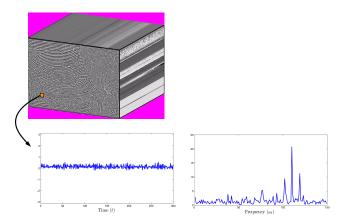
 Image: Section 1

 Image: Section 1
</tr

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ■ ● の Q (2)

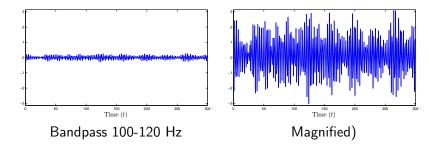
Outline of Algorithm

> For every pixel in every level, values contain motion signal



Outline of Algorithm

- Bandpass from 100 Hz to 120Hz
- Add bandpassed signal to original signal

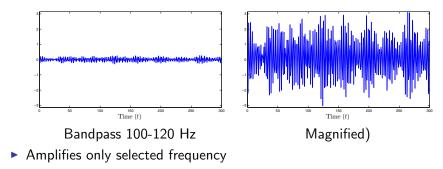


イロト イポト イヨト イヨト

Outline of Algorithm

Bandpass from 100 Hz to 120Hz

Add bandpassed signal to original signal



イロト イポト イヨト イヨト

Easy to Parallelize

Parallelize spatial decomposition over frames

Easy to Parallelize

Parallelize spatial decomposition over frames

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Parallelize temporal filtering over pixels.

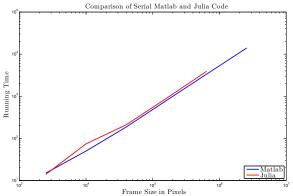
Easy to Parallelize

- Parallelize spatial decomposition over frames
- Parallelize temporal filtering over pixels.
- Difficulty lies in how to store data over cores.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Relatively easy to port code to Julia

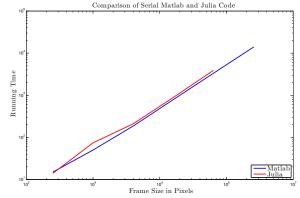
- Relatively easy to port code to Julia
- Compare serial performance of matlab vs. julia at different image sizes.



- Relatively easy to port code to Julia
- Compare serial performance of matlab vs. julia at different image sizes.

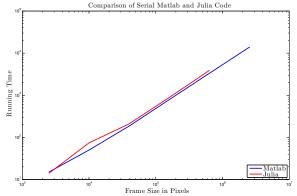
・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

3



Julia is slightly slower, but comparable.

- Relatively easy to port code to Julia
- Compare serial performance of matlab vs. julia at different image sizes.

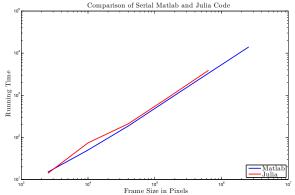


- Julia is slightly slower, but comparable.
- Not surprising since main processing occurs in ffts (in libfftw).

イロト 不得 トイヨト イヨト

э

- Relatively easy to port code to Julia
- Compare serial performance of matlab vs. julia at different image sizes.



- Julia is slightly slower, but comparable.
- Not surprising since main processing occurs in ffts (in libfftw).
- Uses 400 GB at largest problem size, 1600×1600×300.

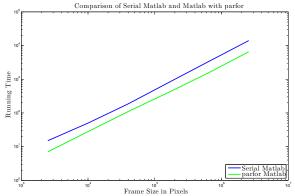
Matlab Parfor

Parfor gives factor of two improvement when used with 12 cores.

Matlab Parfor

Parfor gives factor of two improvement when used with 12 cores.

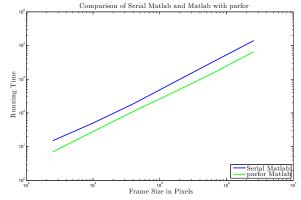
> Parfor processing on frames and on temporal processing



Matlab Parfor

Parfor gives factor of two improvement when used with 12 cores.

> Parfor processing on frames and on temporal processing



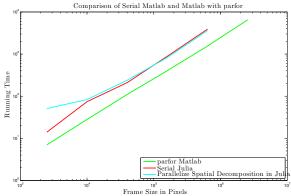
Only 2x improvement

Parllelize the spatial decomposition and reconstruction in Julia

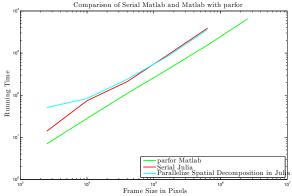
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

Parllelize the spatial decomposition and reconstruction in Julia

> Faster than serial Julia for large problem size.

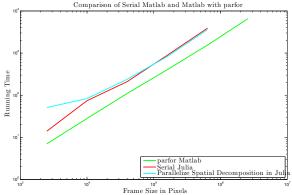


- Parllelize the spatial decomposition and reconstruction in Julia
- Faster than serial Julia for large problem size.



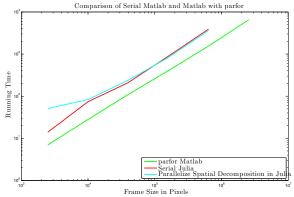
 The spatial decomposition is extremely fast, but reordered data for temporal filtering is very, very slow.

- Parllelize the spatial decomposition and reconstruction in Julia
- Faster than serial Julia for large problem size.



- The spatial decomposition is extremely fast, but reordered data for temporal filtering is very, very slow.
- ▶ In serial code, temporal processing uses 14% of time.

- Parllelize the spatial decomposition and reconstruction in Julia
- Faster than serial Julia for large problem size.

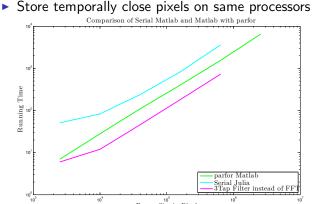


- The spatial decomposition is extremely fast, but reordered data for temporal filtering is very, very slow.
- ▶ In serial code, temporal processing uses 14% of time.
- In parallel code, temporal processing uses 50% of time.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 Makes temporal processing more local to avoid communication overhead.

 Makes temporal processing more local to avoid communication overhead.



Frame Size in Pixels

- Makes temporal processing more local to avoid communication overhead.
- Store temporally close pixels on same processors Comparison of Serial Matlab and Matlab with parfor 10 10 Running Time ā. 10 parfor Matlab Serial Julia 3Tap Filter instead of F 105 10 Frame Size in Pixels

> 2.5x faster than Matlab, 5x faster than serial Julia

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

-

- Makes temporal processing more local to avoid communication overhead.
- Store temporally close pixels on same processors Comparison of Serial Matlab and Matlab with parfor 10 Running Time ā. 10 parfor Matlab . Serial Julia Tap Filter instead of F 10 105 Frame Size in Pixels
- > 2.5x faster than Matlab, 5x faster than serial Julia

- 4 同 ト 4 国 ト 4 国 ト

Matlab parfor fails to capitalize on this