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Processing is on uncompressed video
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Uncompressed videos uses huge amounts of space.
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1080p at 30 FPS is one gigabyte per second
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Lots of algorithms are easy to parallelize due to independence
of processing in space or time.
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DSP based method to magnify subtle motions

v

Here are some cool examples of motion magnification.

Switch to video.
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v

FFT-based algorithm lends itself to being parallelized.

v

Try to parallelize and see how far we can get
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Outline of algorithm - three stages

v

1. Spatially decompose each frame.

v

2. Temporally process each pixel in each decomposition level

3. Reconstruct each frame

v

v

Every stage is easy to parallelize individually

v

Serial algorithm takes several hours on high resolution videos.
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Outline of algorithm - Spatial Decomposition

» Say you have frames Fy,..., F,

» Decompose each frame into different spatial bands
F,' — (D,"l, ey D,',k)

uses k times as much space as the original frame.

» Decomposition is performing by FFT, multiplying by filters
and applying IFFT

Dij = FHT; x F{Fi}}

» Transform is invertible.
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Outline of algorithm - Spatial Decomposition

» Create decomposition
for every frame

Orientations

u]
o)
I
i
it




Outline of Algorithm

> For every pixel in every level, values contain motion signal
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Outline of Algorithm

» Bandpass from 100 Hz to 120Hz
» Add bandpassed signal to original signal
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Outline of Algorithm

» Bandpass from 100 Hz to 120Hz
» Add bandpassed signal to original signal
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» Amplifies only selected frequency
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Easy to Parallelize

> Parallelize spatial decomposition over frames
> Parallelize temporal filtering over pixels.

» Difficulty lies in how to store data over cores.
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Matlab vs. Julia

» Relatively easy to port code to Julia
» Compare serial performance of matlab vs. julia at different
image sizes.

. Comparison of Serial Matlab and Julia Code
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Running Time
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Frame SI‘ID( in Pixels
» Julia is slightly slower, but comparable.

» Not surprising since main processing occurs in ffts (in libfftw).
> Uses 400 GB at largest problem size, 1600x1600x300.
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Matlab Parfor

» Parfor gives factor of two improvement when used with 12
cores.
» Parfor processing on frames and on temporal processing

Comparison of Serial Matlab and Matlab with parfor
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» Only 2x improvement
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Julia spawnat vs. Matlab parfor

Parllelize the spatial decomposition and reconstruction in Julia
Faster than serial Julia for large problem size.

. Comparison of Serial Matlab and Matlab with parfor
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» The spatial decomposition is extremely fast, but reordered
data for temporal filtering is very, very slow.
In serial code, temporal processing uses 14% of time.
In parallel code, temporal processing uses 50% of time.
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filter

> Makes temporal processing more local to avoid
communication overhead.
» Store temporally close pixels on same processors
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» 2.5x faster than Matlab, 5x faster than serial Julia
» Matlab parfor fails to capitalize on this



