
Parallel Video Processing

Neal Wadhwa

December 10, 2012

Parallel Video Processing

I Processing is on uncompressed video

I Uncompressed videos uses huge amounts of space.

I 1080p at 30 FPS is one gigabyte per second

I Lots of algorithms are easy to parallelize due to independence
of processing in space or time.

Parallel Video Processing

I Processing is on uncompressed video

I Uncompressed videos uses huge amounts of space.

I 1080p at 30 FPS is one gigabyte per second

I Lots of algorithms are easy to parallelize due to independence
of processing in space or time.

Parallel Video Processing

I Processing is on uncompressed video

I Uncompressed videos uses huge amounts of space.

I 1080p at 30 FPS is one gigabyte per second

I Lots of algorithms are easy to parallelize due to independence
of processing in space or time.

Parallel Video Processing

I Processing is on uncompressed video

I Uncompressed videos uses huge amounts of space.

I 1080p at 30 FPS is one gigabyte per second

I Lots of algorithms are easy to parallelize due to independence
of processing in space or time.

Example: Motion Magnification

I DSP based method to magnify subtle motions

I Here are some cool examples of motion magnification.

I Switch to video.

I FFT-based algorithm lends itself to being parallelized.

I Try to parallelize and see how far we can get

Example: Motion Magnification

I DSP based method to magnify subtle motions

I Here are some cool examples of motion magnification.

I Switch to video.

I FFT-based algorithm lends itself to being parallelized.

I Try to parallelize and see how far we can get

Example: Motion Magnification

I DSP based method to magnify subtle motions

I Here are some cool examples of motion magnification.

I Switch to video.

I FFT-based algorithm lends itself to being parallelized.

I Try to parallelize and see how far we can get

Example: Motion Magnification

I DSP based method to magnify subtle motions

I Here are some cool examples of motion magnification.

I Switch to video.

I FFT-based algorithm lends itself to being parallelized.

I Try to parallelize and see how far we can get

Example: Motion Magnification

I DSP based method to magnify subtle motions

I Here are some cool examples of motion magnification.

I Switch to video.

I FFT-based algorithm lends itself to being parallelized.

I Try to parallelize and see how far we can get

Outline of algorithm - three stages

I 1. Spatially decompose each frame.

I 2. Temporally process each pixel in each decomposition level

I 3. Reconstruct each frame

I Every stage is easy to parallelize individually

I Serial algorithm takes several hours on high resolution videos.

Outline of algorithm - three stages

I 1. Spatially decompose each frame.

I 2. Temporally process each pixel in each decomposition level

I 3. Reconstruct each frame

I Every stage is easy to parallelize individually

I Serial algorithm takes several hours on high resolution videos.

Outline of algorithm - three stages

I 1. Spatially decompose each frame.

I 2. Temporally process each pixel in each decomposition level

I 3. Reconstruct each frame

I Every stage is easy to parallelize individually

I Serial algorithm takes several hours on high resolution videos.

Outline of algorithm - three stages

I 1. Spatially decompose each frame.

I 2. Temporally process each pixel in each decomposition level

I 3. Reconstruct each frame

I Every stage is easy to parallelize individually

I Serial algorithm takes several hours on high resolution videos.

Outline of algorithm - three stages

I 1. Spatially decompose each frame.

I 2. Temporally process each pixel in each decomposition level

I 3. Reconstruct each frame

I Every stage is easy to parallelize individually

I Serial algorithm takes several hours on high resolution videos.

Outline of algorithm - Spatial Decomposition

I Say you have frames F1, . . . ,Fn

I Decompose each frame into different spatial bands

Fi → (Di ,1, . . . ,Di ,k)

uses k times as much space as the original frame.

I Decomposition is performing by FFT, multiplying by filters
and applying IFFT

Di ,j = F−1{Tj ×F{Fi}}

I Transform is invertible.

Outline of algorithm - Spatial Decomposition

I Say you have frames F1, . . . ,Fn
I Decompose each frame into different spatial bands

Fi → (Di ,1, . . . ,Di ,k)

uses k times as much space as the original frame.

I Decomposition is performing by FFT, multiplying by filters
and applying IFFT

Di ,j = F−1{Tj ×F{Fi}}

I Transform is invertible.

Outline of algorithm - Spatial Decomposition

I Say you have frames F1, . . . ,Fn
I Decompose each frame into different spatial bands

Fi → (Di ,1, . . . ,Di ,k)

uses k times as much space as the original frame.

I Decomposition is performing by FFT, multiplying by filters
and applying IFFT

Di ,j = F−1{Tj ×F{Fi}}

I Transform is invertible.

Outline of algorithm - Spatial Decomposition

I Say you have frames F1, . . . ,Fn
I Decompose each frame into different spatial bands

Fi → (Di ,1, . . . ,Di ,k)

uses k times as much space as the original frame.

I Decomposition is performing by FFT, multiplying by filters
and applying IFFT

Di ,j = F−1{Tj ×F{Fi}}

I Transform is invertible.

Outline of algorithm - Spatial Decomposition

I Create decomposition
for every frame


x


y

Space (x)

S
pa

ce
 (
y)

Time (t)

Levels

O
ri
en
ta
tio
ns

Space (x)

S
pa

ce
(y

)

Time (t)

Outline of algorithm - Spatial Decomposition

I Create decomposition
for every frame


x


y

Space (x)

S
pa

ce
 (
y)

Time (t)

Levels

O
ri
en
ta
tio
ns

Space (x)

S
pa

ce
(y

)

Time (t)

Outline of algorithm - Spatial Decomposition

I Create decomposition
for every frame


x


y

Space (x)

S
pa

ce
 (
y)

Time (t)

Levels

O
ri
en
ta
tio
ns

Space (x)

S
pa

ce
(y

)

Time (t)

Outline of Algorithm

I For every pixel in every level, values contain motion signal

Outline of Algorithm

I Bandpass from 100 Hz to 120Hz

I Add bandpassed signal to original signal

0 50 100 150 200 250 300

−3

−2

−1

0

1

2

3

Time (t)
0 50 100 150 200 250 300

−3

−2

−1

0

1

2

3

Time (t)

Bandpass 100-120 Hz Magnified)

I Amplifies only selected frequency

Outline of Algorithm

I Bandpass from 100 Hz to 120Hz

I Add bandpassed signal to original signal

0 50 100 150 200 250 300

−3

−2

−1

0

1

2

3

Time (t)
0 50 100 150 200 250 300

−3

−2

−1

0

1

2

3

Time (t)

Bandpass 100-120 Hz Magnified)

I Amplifies only selected frequency

Easy to Parallelize

I Parallelize spatial decomposition over frames

I Parallelize temporal filtering over pixels.

I Difficulty lies in how to store data over cores.

Easy to Parallelize

I Parallelize spatial decomposition over frames

I Parallelize temporal filtering over pixels.

I Difficulty lies in how to store data over cores.

Easy to Parallelize

I Parallelize spatial decomposition over frames

I Parallelize temporal filtering over pixels.

I Difficulty lies in how to store data over cores.

Matlab vs. Julia
I Relatively easy to port code to Julia

I Compare serial performance of matlab vs. julia at different
image sizes.

10
3

10
4

10
5

10
6

10
7

10
1

10
2

10
3

10
4

10
5

Frame Size in Pixels

R
u
n
n
in
g
T
im

e

Comparison of Serial Matlab and Julia Code

Matlab
Julia

I Julia is slightly slower, but comparable.
I Not surprising since main processing occurs in ffts (in libfftw).
I Uses 400 GB at largest problem size, 1600x1600x300.

Matlab vs. Julia
I Relatively easy to port code to Julia
I Compare serial performance of matlab vs. julia at different

image sizes.

10
3

10
4

10
5

10
6

10
7

10
1

10
2

10
3

10
4

10
5

Frame Size in Pixels

R
u
n
n
in
g
T
im

e

Comparison of Serial Matlab and Julia Code

Matlab
Julia

I Julia is slightly slower, but comparable.
I Not surprising since main processing occurs in ffts (in libfftw).
I Uses 400 GB at largest problem size, 1600x1600x300.

Matlab vs. Julia
I Relatively easy to port code to Julia
I Compare serial performance of matlab vs. julia at different

image sizes.

10
3

10
4

10
5

10
6

10
7

10
1

10
2

10
3

10
4

10
5

Frame Size in Pixels

R
u
n
n
in
g
T
im

e

Comparison of Serial Matlab and Julia Code

Matlab
Julia

I Julia is slightly slower, but comparable.

I Not surprising since main processing occurs in ffts (in libfftw).
I Uses 400 GB at largest problem size, 1600x1600x300.

Matlab vs. Julia
I Relatively easy to port code to Julia
I Compare serial performance of matlab vs. julia at different

image sizes.

10
3

10
4

10
5

10
6

10
7

10
1

10
2

10
3

10
4

10
5

Frame Size in Pixels

R
u
n
n
in
g
T
im

e

Comparison of Serial Matlab and Julia Code

Matlab
Julia

I Julia is slightly slower, but comparable.
I Not surprising since main processing occurs in ffts (in libfftw).

I Uses 400 GB at largest problem size, 1600x1600x300.

Matlab vs. Julia
I Relatively easy to port code to Julia
I Compare serial performance of matlab vs. julia at different

image sizes.

10
3

10
4

10
5

10
6

10
7

10
1

10
2

10
3

10
4

10
5

Frame Size in Pixels

R
u
n
n
in
g
T
im

e

Comparison of Serial Matlab and Julia Code

Matlab
Julia

I Julia is slightly slower, but comparable.
I Not surprising since main processing occurs in ffts (in libfftw).
I Uses 400 GB at largest problem size, 1600x1600x300.

Matlab Parfor

I Parfor gives factor of two improvement when used with 12
cores.

I Parfor processing on frames and on temporal processing

10
3

10
4

10
5

10
6

10
7

10
0

10
1

10
2

10
3

10
4

10
5

Frame Size in Pixels

R
u
n
n
in
g
T
im

e

Comparison of Serial Matlab and Matlab with parfor

Serial Matlab
parfor Matlab

I Only 2x improvement

Matlab Parfor

I Parfor gives factor of two improvement when used with 12
cores.

I Parfor processing on frames and on temporal processing

10
3

10
4

10
5

10
6

10
7

10
0

10
1

10
2

10
3

10
4

10
5

Frame Size in Pixels

R
u
n
n
in
g
T
im

e

Comparison of Serial Matlab and Matlab with parfor

Serial Matlab
parfor Matlab

I Only 2x improvement

Matlab Parfor

I Parfor gives factor of two improvement when used with 12
cores.

I Parfor processing on frames and on temporal processing

10
3

10
4

10
5

10
6

10
7

10
0

10
1

10
2

10
3

10
4

10
5

Frame Size in Pixels

R
u
n
n
in
g
T
im

e

Comparison of Serial Matlab and Matlab with parfor

Serial Matlab
parfor Matlab

I Only 2x improvement

Julia spawnat vs. Matlab parfor
I Parllelize the spatial decomposition and reconstruction in Julia

I Faster than serial Julia for large problem size.

10
3

10
4

10
5

10
6

10
7

10
0

10
1

10
2

10
3

10
4

Frame Size in Pixels

R
u
n
n
in
g
T
im

e

Comparison of Serial Matlab and Matlab with parfor

parfor Matlab
Serial Julia
Parallelize Spatial Decomposition in Julia

I The spatial decomposition is extremely fast, but reordered
data for temporal filtering is very, very slow.

I In serial code, temporal processing uses 14% of time.
I In parallel code, temporal processing uses 50% of time.

Julia spawnat vs. Matlab parfor
I Parllelize the spatial decomposition and reconstruction in Julia
I Faster than serial Julia for large problem size.

10
3

10
4

10
5

10
6

10
7

10
0

10
1

10
2

10
3

10
4

Frame Size in Pixels

R
u
n
n
in
g
T
im

e

Comparison of Serial Matlab and Matlab with parfor

parfor Matlab
Serial Julia
Parallelize Spatial Decomposition in Julia

I The spatial decomposition is extremely fast, but reordered
data for temporal filtering is very, very slow.

I In serial code, temporal processing uses 14% of time.
I In parallel code, temporal processing uses 50% of time.

Julia spawnat vs. Matlab parfor
I Parllelize the spatial decomposition and reconstruction in Julia
I Faster than serial Julia for large problem size.

10
3

10
4

10
5

10
6

10
7

10
0

10
1

10
2

10
3

10
4

Frame Size in Pixels

R
u
n
n
in
g
T
im

e

Comparison of Serial Matlab and Matlab with parfor

parfor Matlab
Serial Julia
Parallelize Spatial Decomposition in Julia

I The spatial decomposition is extremely fast, but reordered
data for temporal filtering is very, very slow.

I In serial code, temporal processing uses 14% of time.
I In parallel code, temporal processing uses 50% of time.

Julia spawnat vs. Matlab parfor
I Parllelize the spatial decomposition and reconstruction in Julia
I Faster than serial Julia for large problem size.

10
3

10
4

10
5

10
6

10
7

10
0

10
1

10
2

10
3

10
4

Frame Size in Pixels

R
u
n
n
in
g
T
im

e

Comparison of Serial Matlab and Matlab with parfor

parfor Matlab
Serial Julia
Parallelize Spatial Decomposition in Julia

I The spatial decomposition is extremely fast, but reordered
data for temporal filtering is very, very slow.

I In serial code, temporal processing uses 14% of time.

I In parallel code, temporal processing uses 50% of time.

Julia spawnat vs. Matlab parfor
I Parllelize the spatial decomposition and reconstruction in Julia
I Faster than serial Julia for large problem size.

10
3

10
4

10
5

10
6

10
7

10
0

10
1

10
2

10
3

10
4

Frame Size in Pixels

R
u
n
n
in
g
T
im

e

Comparison of Serial Matlab and Matlab with parfor

parfor Matlab
Serial Julia
Parallelize Spatial Decomposition in Julia

I The spatial decomposition is extremely fast, but reordered
data for temporal filtering is very, very slow.

I In serial code, temporal processing uses 14% of time.
I In parallel code, temporal processing uses 50% of time.

Change processing to use 3-tap primal domain temporal
filter

I Makes temporal processing more local to avoid
communication overhead.

I Store temporally close pixels on same processors

10
3

10
4

10
5

10
6

10
7

10
0

10
1

10
2

10
3

10
4

Frame Size in Pixels

R
u
n
n
in
g
T
im

e

Comparison of Serial Matlab and Matlab with parfor

parfor Matlab
Serial Julia
3Tap Filter instead of FFT

I 2.5x faster than Matlab, 5x faster than serial Julia
I Matlab parfor fails to capitalize on this

Change processing to use 3-tap primal domain temporal
filter

I Makes temporal processing more local to avoid
communication overhead.

I Store temporally close pixels on same processors

10
3

10
4

10
5

10
6

10
7

10
0

10
1

10
2

10
3

10
4

Frame Size in Pixels

R
u
n
n
in
g
T
im

e

Comparison of Serial Matlab and Matlab with parfor

parfor Matlab
Serial Julia
3Tap Filter instead of FFT

I 2.5x faster than Matlab, 5x faster than serial Julia
I Matlab parfor fails to capitalize on this

Change processing to use 3-tap primal domain temporal
filter

I Makes temporal processing more local to avoid
communication overhead.

I Store temporally close pixels on same processors

10
3

10
4

10
5

10
6

10
7

10
0

10
1

10
2

10
3

10
4

Frame Size in Pixels

R
u
n
n
in
g
T
im

e

Comparison of Serial Matlab and Matlab with parfor

parfor Matlab
Serial Julia
3Tap Filter instead of FFT

I 2.5x faster than Matlab, 5x faster than serial Julia

I Matlab parfor fails to capitalize on this

Change processing to use 3-tap primal domain temporal
filter

I Makes temporal processing more local to avoid
communication overhead.

I Store temporally close pixels on same processors

10
3

10
4

10
5

10
6

10
7

10
0

10
1

10
2

10
3

10
4

Frame Size in Pixels

R
u
n
n
in
g
T
im

e

Comparison of Serial Matlab and Matlab with parfor

parfor Matlab
Serial Julia
3Tap Filter instead of FFT

I 2.5x faster than Matlab, 5x faster than serial Julia
I Matlab parfor fails to capitalize on this

