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Example: Motion Magnification

I DSP based method to magnify subtle motions
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I Switch to video.

I FFT-based algorithm lends itself to being parallelized.

I Try to parallelize and see how far we can get
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Outline of algorithm - three stages

I 1. Spatially decompose each frame.

I 2. Temporally process each pixel in each decomposition level

I 3. Reconstruct each frame

I Every stage is easy to parallelize individually

I Serial algorithm takes several hours on high resolution videos.
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Outline of algorithm - Spatial Decomposition

I Say you have frames F1, . . . ,Fn

I Decompose each frame into different spatial bands

Fi → (Di ,1, . . . ,Di ,k)

uses k times as much space as the original frame.

I Decomposition is performing by FFT, multiplying by filters
and applying IFFT

Di ,j = F−1{Tj ×F{Fi}}

I Transform is invertible.
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Outline of algorithm - Spatial Decomposition

I Create decomposition
for every frame
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Outline of Algorithm

I For every pixel in every level, values contain motion signal

  



Outline of Algorithm

I Bandpass from 100 Hz to 120Hz

I Add bandpassed signal to original signal
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Easy to Parallelize

I Parallelize spatial decomposition over frames

I Parallelize temporal filtering over pixels.

I Difficulty lies in how to store data over cores.
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Matlab vs. Julia
I Relatively easy to port code to Julia

I Compare serial performance of matlab vs. julia at different
image sizes.
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Matlab
Julia

I Julia is slightly slower, but comparable.
I Not surprising since main processing occurs in ffts (in libfftw).
I Uses 400 GB at largest problem size, 1600x1600x300.



Matlab vs. Julia
I Relatively easy to port code to Julia
I Compare serial performance of matlab vs. julia at different

image sizes.

10
3

10
4

10
5

10
6

10
7

10
1

10
2

10
3

10
4

10
5

Frame Size in Pixels

R
u
n
n
in
g
T
im

e

Comparison of Serial Matlab and Julia Code

 

 

Matlab
Julia

I Julia is slightly slower, but comparable.
I Not surprising since main processing occurs in ffts (in libfftw).
I Uses 400 GB at largest problem size, 1600x1600x300.



Matlab vs. Julia
I Relatively easy to port code to Julia
I Compare serial performance of matlab vs. julia at different

image sizes.

10
3

10
4

10
5

10
6

10
7

10
1

10
2

10
3

10
4

10
5

Frame Size in Pixels

R
u
n
n
in
g
T
im

e

Comparison of Serial Matlab and Julia Code

 

 

Matlab
Julia

I Julia is slightly slower, but comparable.

I Not surprising since main processing occurs in ffts (in libfftw).
I Uses 400 GB at largest problem size, 1600x1600x300.



Matlab vs. Julia
I Relatively easy to port code to Julia
I Compare serial performance of matlab vs. julia at different

image sizes.

10
3

10
4

10
5

10
6

10
7

10
1

10
2

10
3

10
4

10
5

Frame Size in Pixels

R
u
n
n
in
g
T
im

e

Comparison of Serial Matlab and Julia Code

 

 

Matlab
Julia

I Julia is slightly slower, but comparable.
I Not surprising since main processing occurs in ffts (in libfftw).

I Uses 400 GB at largest problem size, 1600x1600x300.



Matlab vs. Julia
I Relatively easy to port code to Julia
I Compare serial performance of matlab vs. julia at different

image sizes.

10
3

10
4

10
5

10
6

10
7

10
1

10
2

10
3

10
4

10
5

Frame Size in Pixels

R
u
n
n
in
g
T
im

e

Comparison of Serial Matlab and Julia Code

 

 

Matlab
Julia

I Julia is slightly slower, but comparable.
I Not surprising since main processing occurs in ffts (in libfftw).
I Uses 400 GB at largest problem size, 1600x1600x300.



Matlab Parfor

I Parfor gives factor of two improvement when used with 12
cores.

I Parfor processing on frames and on temporal processing
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Julia spawnat vs. Matlab parfor
I Parllelize the spatial decomposition and reconstruction in Julia

I Faster than serial Julia for large problem size.
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parfor Matlab
Serial Julia
Parallelize Spatial Decomposition in Julia

I The spatial decomposition is extremely fast, but reordered
data for temporal filtering is very, very slow.

I In serial code, temporal processing uses 14% of time.
I In parallel code, temporal processing uses 50% of time.
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Change processing to use 3-tap primal domain temporal
filter

I Makes temporal processing more local to avoid
communication overhead.

I Store temporally close pixels on same processors
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parfor Matlab
Serial Julia
3Tap Filter instead of FFT

I 2.5x faster than Matlab, 5x faster than serial Julia
I Matlab parfor fails to capitalize on this
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