A Fast, Parallel Potential Flow Solver

John Moore
Advisor: Jaime Peraire

December 16, 2012

Outline

(1) Introduction to Potential FLow
(2) The Boundary Element Method
(3) The Fast Multipole Method
(9) Discretization
(5) Implementation
(0) Results
(0) Conclusions

Why Potential Flow?

- It's easy and potentially fast
- Potential Flow: $\nabla^{2} \phi=0$ vs:
- Navier-Stokes: $\rho\left(\frac{\partial V}{\partial t}+V \cdot \nabla V\right)=-\nabla p+\nabla \cdot T+f$
- Linear system of equations
- Full-blown fluid simulation (Navier-Stokes) is expensive
- Many times, we are just interested in time-averaged forces, moments, and pressure distribution.

Examples

- Start movie

 1

 1}${ }^{1}$ P.O. Persson
Discontinuous Galerkin CFD.
Runtime time: > 1 week. 100 s of CPUs

Figure 1: Potential Flow Solution. Runtime time: 2 minutes on 4 CPUs

- Cannot model everything (highly turbulent flow, etc).
- Accuracy issues due linearisation assumptions...

Potential Flow Assumptions

- Flow is incompressible
- Viscosity is neglected (can be a major cause of drag)
- Flow is irrotational $(\nabla \times \vec{V}=0)$
- But, it turns out to predict aerodynamic flows pretty well for many cases (examples: Flows about ships and aircraft)
- Governed by Laplace's equation $\nabla^{2} \phi=0$
- Potential in domain written as: $\phi(\vec{r})=\phi_{s}+\phi_{d}+\vec{V}_{\infty} \cdot \vec{r}$
- Enforce that there is no flow in surface-normal direction...
- Force perturbation potential to vanish just inside the body:
- $\phi(\vec{r})=\phi_{s}+\phi_{d}=0$
- Basically forces the aerodynamic body to be a streamsurface

Potential Flow: Discretization

Can be discretized using the Boundary Element Method (BEM)

BEM summary

(1) Divide boundary into N elements
(2) Analytically integrate Green's function over each of the N elements
(3) Compute the potential due to singularity density at each element on all other elements
(9) Solve for the surface singularity strengths

The BEM requires that either a Neumann or Dirichlet boundary condition be applied wherever we want a solution.

Boundary Element Method: Green's Function

- There are several Green's functions that satisfy Laplace's equation:
- Singe-Layer potential: $G_{s}\left(\sigma_{j}, \vec{r}_{i}-\vec{r}_{j}\right)=\frac{1}{4 \pi} \frac{\sigma_{j}}{\left\|\vec{r}_{i}-\vec{r}_{j}\right\|}$
- Double-Layer potential: $G_{d}\left(\mu_{j}, \vec{r}_{i}-\vec{r}_{j}\right)=\frac{1}{4 \pi} \frac{\partial}{\partial \hat{n}_{j}} \frac{\mu_{j}}{\left\|\vec{r}_{i}-\vec{r}_{j}\right\|}$
- $\phi\left(\vec{r}_{i}\right)=\int_{S_{j}}\left(G_{d}\left(\mu_{j}, \vec{r}_{i}-\vec{r}_{j}\right)+G_{s}\left(\sigma_{j}, \vec{r}_{i}-\vec{r}_{j}\right)\right)=0$
- These Green's functions can be analytically integrated to arbitrary precision over planar surfaces
- Analytic integral can be very expensive...

Boundary Element Method: Collocation vs. Galerkin

- Collocation: Enforce boundary condition at N explicit points.

Galerkin: Enforce Boundary condition in an integrated sense over the surface
(1) Write unknown singularity distribution μ as a linear combination of N basis functions a_{i}
(2) Substitute into governing equations, and write a residual vector R
(3) Multiply by test residual by test function.
(4) Choose test function to be basis function \rightarrow residual will be orthogonal to the set of basis functions.

$$
\begin{aligned}
R_{i}=\int_{S_{i}} a_{i} \phi_{i}\left(\vec{r}_{i}\right) d S_{i} & =\int_{S_{i}} a_{i}\left[\sum _ { j = 1 } ^ { N _ { E } } \left(\frac{1}{4 \pi} \int_{S_{j}} \mu_{j} \frac{\partial}{\partial \hat{n}_{S_{j}}} \frac{1}{\left\|\vec{r}_{i}-\vec{r}_{j}\right\|} d S_{j}\right.\right. \\
& \left.\left.+\frac{1}{4 \pi} \int_{S_{j}} \sigma_{j} \frac{1}{\left\|\vec{r}_{i}-\vec{r}_{j}\right\|} d S_{j}\right)\right] d S i=0
\end{aligned}
$$

Boundary Element Method: Computational Considerations

- Produces a system that is dense, and may be very large
- For example, the aircraft shown earlier would have resulted in a 180000×180000 dense matrix
- Would require 259 GB of memory just to store the system of equations!
- So parallelizing the matrix assembly routine won't help (yet)
- This would be a deal-breaker for large problems, but there is a solution...

Hybrid Fast Multipole Method (FMM)/ Boundary Element Method (BEM)

What is FMM?

- A method to compute a fast matrix-vector product (MVP)
- Allows MVP to be done in $O\left(p^{4} N\right)$ operations by sacrificing accuracy, where p is the multipole expansion order.
- We would think that a MVP for a dense matrix scales as $O\left(N^{2}\right)$
- Theoretically highly parallelizable
- More on this later...

FMM can be applied to the BEM

- The FMM is easily applied to the Green's function of Laplace's Equation
- Can think of elements as being composed of many "source" particles
- Maintains same embarrassing parallelism as canonical FMM
- Create "root" box encompassing entire surface
- Recursively divide box until there are no more than $N_{\max }$ elements in a box.
- Easily Parallizable

Figure 2: All level 8 boxes in octree about an aircraft

FMM Steps 2 and 3: Upward and Downward Pass

Basic Idea: Separate near-field and far-field interactions

Parallelization

Four Options:

(1) Distributed Memory (MPI)
(2) Shared Memory (OpenMP)
(3) GPU
(9) Julia

- Originally, I wrote the FMM code in MATLAB, but was VERY slow
- Switched to $\mathrm{C}++$, code sped up 4 orders of magnitude
- Now, runtimes are at most several minutes
- Weary of scripting due to MATLAB implementation...
- MPI would be overkill
- Ended up computing matrix-vector product in $\mathrm{C}++$ using OpenMP
- System solved in MATLAB using gmres

Implementation

- First, had to get serial code to work (6,500 lines of code)
- Once serial code available, easy to parallize with OpenMP
- Simply add preprocessor directives and specify \# of cores

Example:

Solving the System

- $A x=b$ solved with GMRES
- Matrix is reasonably well-conditioned, but can we do better?
- But we never compute the A matrix, so how do we create a preconditioner?
- Assemble sparse matrix containing only near-field interactions.
- Then perform ILU on the near-field influence matrix to create

Figure 3: Near-field influence Matrix preconditioner

Test Case

Falcon Buisness Jet

5234 Elements, 2619 Nodes
Linear Basis Functions
Requires >5 minutes to compute solution without FMM

Figure 4: Falcon business jet

Results

Table 1: Speedup compared to 1 CPU

p	1 CPU (s)	2 CPUs	3 CPUs	4 CPUs
1	5.2414	1.24	1.36	1.37
2	8.6618	1.39	1.59	1.70
3	23.8976	1.65	2.04	2.34
4	52.4548	1.73	2.26	2.59
5	105.9322	1.76	2.38	2.79

Conclusions

(1) $\mathrm{C}++$ is so much faster than MATLAB for BEMs
(2) Only really makes sense to use shared memory parallelism (like OpenMP) for this application
(3) Speedups of 2.8 X possible on 4 CPUs in some cases
(9) Implementation can be improved: this was my first attempt at parallel programming

Thank you for your time!

Questions/Comments?

Table 2: Percent Speedup

p	1 CPU	2 CPUs	3 CPUs	4 CPUs
1	5.2414	4.2134	3.8450	3.8305
2	8.6618	6.2183	5.4455	5.1049
3	23.8976	14.5198	11.7185	10.2322
4	52.4548	30.3419	23.2016	20.2512
5	105.9322	60.3612	44.4813	37.9687

