
A Fast, Parallel Potential Flow Solver

John Moore
Advisor: Jaime Peraire

December 16, 2012

John Moore A Fast, Parallel Potential Flow Solver

Outline

1 Introduction to Potential FLow

2 The Boundary Element Method

3 The Fast Multipole Method

4 Discretization

5 Implementation

6 Results

7 Conclusions

John Moore A Fast, Parallel Potential Flow Solver

Why Potential Flow?

It’s easy and potentially fast

Potential Flow: ∇2φ = 0 vs:

Navier-Stokes: ρ

(
∂V

∂t
+ V · ∇V

)
= −∇p +∇ · T + f

Linear system of equations

Full-blown fluid simulation (Navier-Stokes) is expensive

Many times, we are just interested in time-averaged forces,
moments, and pressure distribution.

John Moore A Fast, Parallel Potential Flow Solver

Examples

Start movie 1

1P.O. Persson

Discontinuous Galerkin CFD.
Runtime time: > 1 week. 100s
of CPUs

Figure 1: Potential Flow Solution.
Runtime time: 2 minutes on 4 CPUs

John Moore A Fast, Parallel Potential Flow Solver

Potential Flow: Can be Fast, But...

Cannot model everything (highly turbulent flow, etc).

Accuracy issues due linearisation assumptions...

Potential Flow Assumptions

Flow is incompressible

Viscosity is neglected (can be a major cause of drag)

Flow is irrotational (∇× ~V = 0)

But, it turns out to predict aerodynamic flows pretty well for
many cases (examples: Flows about ships and aircraft)

John Moore A Fast, Parallel Potential Flow Solver

Potential Flow: Governing Equation

Governed by Laplace’s equation ∇2φ = 0

Potential in domain written as: φ(~r) = φs + φd + ~V∞ ·~r
Enforce that there is no flow in surface-normal direction...

Force perturbation potential to vanish just inside the body:

φ(~r) = φs + φd = 0

Basically forces the aerodynamic body to be a streamsurface

John Moore A Fast, Parallel Potential Flow Solver

Potential Flow: Discretization

Can be discretized using the Boundary Element Method (BEM)

BEM summary

1 Divide boundary into N elements

2 Analytically integrate Green’s function over each of the N
elements

3 Compute the potential due to singularity density at each
element on all other elements

4 Solve for the surface singularity strengths

The BEM requires that either a Neumann or Dirichlet boundary
condition be applied wherever we want a solution.

John Moore A Fast, Parallel Potential Flow Solver

Boundary Element Method: Green’s Function

There are several Green’s functions that satisfy Laplace’s
equation:

Singe-Layer potential: Gs(σj ,~ri −~rj) = 1
4π

σj
||~ri−~rj ||

Double-Layer potential: Gd(µj ,~ri −~rj) = 1
4π

∂

∂n̂j

µj
||~ri −~rj ||

φ(~ri) =
∫
Sj

(Gd(µj ,~ri −~rj) + Gs(σj ,~ri −~rj)) = 0

These Green’s functions can be analytically integrated to
arbitrary precision over planar surfaces

Analytic integral can be very expensive...

John Moore A Fast, Parallel Potential Flow Solver

Boundary Element Method: Collocation vs. Galerkin

Collocation: Enforce boundary condition at N explicit points.

Galerkin: Enforce Boundary condition in an integrated sense over
the surface

1 Write unknown singularity distribution µ as a linear
combination of N basis functions ai

2 Substitute into governing equations, and write a residual
vector R

3 Multiply by test residual by test function.

4 Choose test function to be basis function → residual will be
orthogonal to the set of basis functions.

Ri =
∫
Si
aiφi (~ri)dSi =

∫
Si
ai

[∑NE
j=1

(
1
4π

∫
Sj
µj

∂

∂n̂Sj

1

||~ri −~rj ||
dSj

+ 1
4π

∫
Sj
σj

1
||~ri−~rj ||dSj

)]
dSi = 0

(1)
John Moore A Fast, Parallel Potential Flow Solver

Boundary Element Method: Computational Considerations

Produces a system that is dense, and may be very large

For example, the aircraft shown earlier would have resulted in
a 180000x180000 dense matrix

Would require 259 GB of memory just to store the system
of equations!

So parallelizing the matrix assembly routine won’t help (yet)

This would be a deal-breaker for large problems, but there is a
solution...

John Moore A Fast, Parallel Potential Flow Solver

Hybrid Fast Multipole Method (FMM)/ Boundary Element
Method (BEM)

What is FMM?

A method to compute a fast matrix-vector product (MVP)

Allows MVP to be done in O(p4N) operations by sacrificing
accuracy, where p is the multipole expansion order.

We would think that a MVP for a dense matrix scales as
O(N2)

Theoretically highly parallelizable

More on this later...

FMM can be applied to the BEM

The FMM is easily applied to the Green’s function of
Laplace’s Equation

Can think of elements as being composed of many ”source”
particles

Maintains same embarrassing parallelism as canonical FMM

John Moore A Fast, Parallel Potential Flow Solver

FMM Step 1: Octree decomposition

Create “root” box encompassing entire surface
Recursively divide box until there are no more than Nmax

elements in a box.
Easily Parallizable

Figure 2: All level 8 boxes in octree about an aircraft

John Moore A Fast, Parallel Potential Flow Solver

FMM Steps 2 and 3: Upward and Downward Pass

Basic Idea: Separate near-field and far-field interactions

M → M

M → L

L → L

Upward Pass

Downard Pass

John Moore A Fast, Parallel Potential Flow Solver

Parallelization

Four Options:

1 Distributed Memory (MPI)

2 Shared Memory (OpenMP)

3 GPU

4 Julia

Originally, I wrote the FMM code in MATLAB, but was VERY
slow

Switched to C++, code sped up 4 orders of magnitude

Now, runtimes are at most several minutes

Weary of scripting due to MATLAB implementation...

MPI would be overkill

Ended up computing matrix-vector product in C++ using
OpenMP

System solved in MATLAB using gmres

John Moore A Fast, Parallel Potential Flow Solver

Implementation

First, had to get serial code to work (6,500 lines of code)
Once serial code available, easy to parallize with OpenMP
Simply add preprocessor directives and specify # of cores

Example:

1 // Mu l t i p o l e to l o c a l
2 f o r (i n t l e v = 2 ; l e v < N l e v e l ; l e v++){
3 #pragma omp p a r a l l e l f o r
4 f o r (i n t i =0; i< l e v e l i n d e x [l e v] . i d x . s i z e () ; i++){
5 i n t bx = l e v e l i n d e x [l e v] . i d x [i] ;
6 i f (boxes [bx] . i s e v a l b o x) {
7 f o r (i n t j =0; j<boxes [bx] . i l i s t . s i z e () ; j++){
8 i f (boxes [boxes [bx] . i l i s t [j]] . i s s o u r c e b o x) {
9 m u l t i p o l e t o l o c a l (boxes [boxes [bx] . i l i s t [j]] ,

boxes [bx] ,Bnm,Anm, i l i s t c o n s t s [bx] [j] ,
f i r s t t i m e , compute s i ng l e , compute doub le) ;

10 }
11 }
12 }
13 }
14 }

John Moore A Fast, Parallel Potential Flow Solver

Solving the System

Ax=b solved with GMRES

Matrix is reasonably well-conditioned,
but can we do better?

But we never compute the A matrix,
so how do we create a preconditioner?

Assemble sparse matrix containing
only near-field interactions.

Then perform ILU on the near-field
influence matrix to create
preconditioner

Figure 3: Near-field influence Matrix

John Moore A Fast, Parallel Potential Flow Solver

Test Case

Falcon Buisness Jet

5234 Elements, 2619 Nodes
Linear Basis Functions
Requires > 5 minutes to compute solution without FMM

Figure 4: Falcon business jet
John Moore A Fast, Parallel Potential Flow Solver

Results

Table 1: Speedup compared to 1CPU

p 1 CPU (s) 2 CPUs 3 CPUs 4 CPUs

1 5.2414 1.24 1.36 1.37
2 8.6618 1.39 1.59 1.70
3 23.8976 1.65 2.04 2.34
4 52.4548 1.73 2.26 2.59
5 105.9322 1.76 2.38 2.79

John Moore A Fast, Parallel Potential Flow Solver

Conclusions

1 C++ is so much faster than MATLAB for BEMs

2 Only really makes sense to use shared memory parallelism (like
OpenMP) for this application

3 Speedups of 2.8X possible on 4 CPUs in some cases

4 Implementation can be improved: this was my first attempt at
parallel programming

John Moore A Fast, Parallel Potential Flow Solver

Thank you for your time!

Questions/Comments?

John Moore A Fast, Parallel Potential Flow Solver

Table 2: Percent Speedup

p 1 CPU 2 CPUs 3 CPUs 4 CPUs

1 5.2414 4.2134 3.8450 3.8305
2 8.6618 6.2183 5.4455 5.1049
3 23.8976 14.5198 11.7185 10.2322
4 52.4548 30.3419 23.2016 20.2512
5 105.9322 60.3612 44.4813 37.9687

John Moore A Fast, Parallel Potential Flow Solver

