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A parallel high-order Boundary Element Method accelerated by the Fast Multipole
Method is presented in this report. The case of potential flow about arbitrary geometries
will be investigated using this method. The goal of this application is to provide a ”push-
button” tool for the design of aircraft, where medium-fidelity solutions can be obtained in
seconds and not hours or days required by Navier-Stokes solvers.

I. Introduction

Panel methods are currently capable of rapidly solving the potential flow equation on rather complex
geometries using only a workstation. These methods, which originated in the early 1960’s, continue to be

attractive since the governing equations only need to be solved at the boundary.1–4 This eliminates the need
for a volume mesh, as is needed when using Finite Difference, Finite Volume, or Finite Element methods, and
results in a system which is of comparatively lower dimension. However, unlike these methods, panel methods
result in a system of equations that is dense and memory requirements grow as the square of the number
of degrees of freedom. In the late 1980’s, Greengard et al.5 developed the Fast Multipole Method (FMM)
which reduced the computational complexity of performing matrix-vector products in particle simulations
from O(N2) to O(N), with a memory requirement that scales as O(NlogN). In the early 1990’s, the FMM
was coupled with a Boundary Element Method (BEM) solver in order to rapidly simulate circuits.6 In
the late 1990’s, this same approach was applied to aerodynamic cases with a computational complexity of
O(NlogN).7–9

This project seeks to develop a fast, parallel implementation of a potential flow solver that scales as
O(N) where N are the number of elements in the surface discretization. OpenMP will be used for the
parallel environment, since the primary use of this code is seen as being a design tool used on a workstation
or a laptop. This document will detail the formulation of a steady-state Boundary Element Method, followed
by a detailed description of the Fast Multipole Method. Results will be presented for varying number of
processors and various multipole expansion orders.

II. Incompressible Potential Flow

A. Scalar and Vector Potentials

Incompressible potential flow can be represented by a scalar potential field φ.10 The fluid velocity at point
~r with respect to some origin is the superposition of the gradient of the scalar potential and the freestream
velocity:

~U(~r, t) = ∇φ(~r, t) + ~V∞ (1)

The continuity equation for an incompressible fluid can be written as:

∇ · ~U = 0 (2)

Equation 1 can be substituted into equation 2 to yield Laplace’s equation which governs inviscid, incom-
pressible, and irrotational flow:

∇2φ = 0 (3)

The curl of the velocity field is the vorticity, ~ω, in the domain:

~ω = ∇× ~U (4)
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B. Boundary Conditions

In contrast to tratitional CFD methods where boundary conditions are only applied at boundaries, the BEM
requires that a boundary condition be prescribed wherever a solution is needed. In potential flows, the
boundary condition is a no-penetration condition, but not a no-slip condition since the flow is inviscid:

~U(~r, t) · n̂(~r, t) =
(
∇φ(~r, t) + ~V∞

)
· n̂(~r, t) = 0 (5)

where n̂(~r, t) is the unit vector normal to the aerodynamic surface at ~r. The no-penetration condition can
be enforced explicitly with a Neumann boundary condition on the velocity or implicitly with a Dirichlet
boundary condition on the potential inside the body, which will be discussed later.

C. Steady Bernoulli Equation

Pressure and velocity in an incompressible flow can be related by the steady Bernoulli equation:

1

2
||~U ||2 =

1

2
||∇φ+ ~V∞||2 =

p

ρ
(6)

The coefficient of pressure, Cp is defined as:

Cp =
p− p∞
p∞

(7)

where p∞ = 1
2V

2
∞ is the freestream dynamic pressure. The coefficient of pressure can be re-written using

equation 6:

Cp =
1
2 ||∇φ+ ~V∞||2

1
2 ||~V∞||2

− 1 (8)

D. Kutta Condition

Inviscid lifting flows require invoking the Kutta condition to enforce pressure continuity at the trailing edge
and ensure the flow at the trailing edge leaves cleanly. Pressure continuity requires that the strength of
the wake sheet potential must equal the jump in potential from the upper trailing edge surface to the lower
trailing edge surface:11 Note that the results in this project were obtained for non-lifting flow and hence no
Kutta condition was applied, but the code can be easily modified to include the Kutta condition if needed.

φu − φl = φw (9)

φu

φl

∆φw = φu − φl

Figure 1. Potential shed into the wake in a direction that bisects the trailing edge with a strength equal to
the jump in potential between the upper and lower trailing edge surfaces.

III. Boundary Integral Equations

Laplace’s equation is discretized using the BEM based on the Morino formulation2 where the perturba-
tion potential is equal to zero inside the body, forcing the body to be a streamsurface. This results in a
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Dirichlet boundary condition. The perturbation potential at some evaluation point ~ri infinitesimally inside
the aerodynamic body due to source and doublet panels distributed over surface Sj is:

φ(~ri) =

∫
Sj

(Gd(µj , ~ri − ~rj) +Gs(σj , ~ri − ~rj)) = 0 (10)

where Gd is the Green’s function for double-layer potential satisfying Laplace’s equaiton, Gs is the corre-
sponding equation for the single-layer potential, µ is the double-layer (doublet) potential strength, and σ is
the single-layer (source) potential strength. For the remainder of this document, i will be used to denote an
“evaluation index” and j (and sometimes k) will be used as a “origin index”. Green’s function for single-layer
potential is:

Gs(σj , ~ri − ~rj) =
1

4π

σj
||~ri − ~rj ||

(11)

Green’s function for double-layer potential is:

Gd(µj , ~ri − ~rj) =
1

4π

∂

∂n̂j

µj
||~ri − ~rj ||

(12)

The perturbation potential in equation 10 can be decomposed into contributions from the aerodynamic
surface Bj and any panelled wake surface BWj :

φ(~ri) =
1

4π

∫
Bj

µj
∂

∂n̂Bj

1

||~ri − ~rj ||
dBj +

1

4π

∫
Bj

σj
1

||~ri − ~rj ||
dBj +

1

4π

∫
BWj

µwj

∂

∂n̂BWj

1

||~ri − ~rj ||
dBWj

= 0

(13)
At least one row of panelled wake needs to be shed from the trailing edge in order to enforce the Kutta
condition. Note that µwj

is known from the Kutta condition. σj is chosen to equal the component of all
velocity in the domain not generated by equation 13 in the direction normal to surface Bj :

σj(~rj) = ~V∞ · n̂j (14)

σ can be thought of as a blowing term accounting for all the velocity not generated directly by the aerody-
namic surface. The only unknown in the system are the doublet strengths, µj on surface Bj . The velocity
at some point ~ri is simply the gradient of the perturbation potential according to equation 1. Referring to
equation 13, the velocity becomes

~U(~rj) = 1
4π∇

∫
Bj
µj

∂

∂n̂Bj

1

||~ri − ~rj ||
dBj +

1

4π
∇
∫
Bj

σ
1

||~ri − ~rj ||
dBj

+ 1
4π∇

∫
BWj

µw
∂

∂n̂BWj

1

||~ri − ~rj ||
dBWj + ~V∞

(15)

IV. Discretization and Implementation

The boundary integral equations are discretized with a Galerkin formulation of the Boundary Element
Method. Assume the aerodynamic surface Sj in the previous section is discretized into NE elements and the
wake surface SWj is discretized into and NW wake elements. This results in NE aerodynamic panels ,Sj , and
NW wake panels, SWj . The perturbation potential at some evaluation point ~ri just inside the aerodynamic
surface can be expressed as:

φ(~ri) =
∑NE

j=1

(
1
4π

∫
Sj
µj

∂

∂n̂Sj

1

||~ri − ~rj ||
dSj +

1

4π

∫
Sj

σj
1

||~ri − ~rj ||
dSj

)
+

∑NW

j=1
1
4π

∫
SW j

µwj

∂

∂n̂Sj

1

||~ri − ~rj ||
dSWj = 0

(16)

The integrals over the triangular panels Sj and SWj have been analytically derived by Neumann12 for
arbitrarily high order source and doublet distributions. Currently, panels with linearly varying source and
doublet strengths are implemented. The Galerkin method minimizes the residual over the aerodynamic
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surface by multiplying each target panel with a test basis function and integrating over the panel. For each
target panel i with surface Si, a residual can be written in terms of the Boundary Integral Equation:

Ri =
∫
Si
aiφi(~ri)dSi =

∫
Si
ai

[∑NE

j=1

(
1
4π

∫
Sj
µj

∂

∂n̂Sj

1

||~ri − ~rj ||
dSj

+ 1
4π

∫
Sj
σj

1
||~ri−~rj ||dSj

)
+
∑NW

j=1
1
4π

∫
SW j

µwj

∂

∂n̂SWj

1

||~ri − ~rj ||
dSWj

]
dSi = 0

(17)
The basis functions ai are chosen to be linear, and the integrals over each target element surface Si are
computed using Gaussian quadrature.

V. Fast Multipole Method

This section presents the theory of the Fast Multipole Method and describes how it is used to accelerate
the flow solver. The equations presented below closely follow those developed by Greengard5 for use in
particle simulations. A brief explanation of the fast multipole method will be given, and will be followed by
a more detailed description of the translation operators. The FMM is composed of three primary routines:
the octree domain decomposition, the upward pass, and the downward pass. Each of the three routines are
detailed below. Figure 3 depicts the primary steps of the FMM algorithm.

A. Octree Decomposition

A cubic domain is generated spanning all the sources, doublets, and vortons in space. The cube is recursively
divided into eight boxes, until there are no more than NMAX elements in a box. Boxes with no elements
in them are deleted. The FMM method requires that each cell know which its nearest neighbors and
second nearest neighbors are. A nearest neighbor is defined as a box who touches another box, even if they
are just touching at a point. Nearest neighbors can be easily computed by traversing down the octree,
searching through the children of each box’s parent. The second nearest neighbors can be computed by
searching through the nearest neighbors of each box’s nearest neighbors. The computational cost of the
octree domain composition can range from O(NlogN) to O(N), depending on the homogeneity of the
singularity distributions where N is the number of elements in the domain.

B. Upward Pass

The upward pass is composed of two steps: (1) Multipole Generation and (2) the Multipole-to-Multipole
(M →M) translation. In the Multipole Generation step, multipole expansion coefficients are computed due
to all sources and dipoles in each childless box. This will result in two expansion coefficients for each box,
corresponding to the source and doublet potentials. The complexity of this step is O(Np2), where p is the
order of the multipole expansion. The Multipole-to-Multipole translation is the recursive translation of the
multipole coefficients up the tree, starting with the childless boxes. The computational complexity of this
step is O(Np4).

C. Downward Pass

The downward pass is composed of four steps: (1) the Multipole to Local (M → L) translation,(2) the
Local to Local translation (L → L), (3) the Direct Evaluation, and (4) the Local Expansion evaluation.
The (M → L) translation involves the conversion of all the multipole expansions of the boxes in a box’s
interaction list into a Taylor series expansion about the box’s center. The interaction list can be defined
as all the second nearest neighbors of a box, or a more complicated criteria.5 This is the most expensive
part of the FMM algorithm due the large number of boxes in the second nearest neighbor list and has a
complexity that scales as O(Np4). The L → L translation is a recursive translation of local coefficients
down the octree from each box to it’s child. The complexity of this operation scales as O(Np4). The Direct
Evaluation step computes the interaction between all sources, dipoles, and vortons in a box and all sources,
dipoles, and vortons in the box’s nearest neighbors. The complexity of this operation is O(Ns), where s is a
measure of the FLOPS required to analytically integrate the source and dipole distribution over a element.
s is approximately 100 for a linear panel. The final step is the evaluation of the Local Expansions in each
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Figure 2. All childless boxes for an octree about a busness jet
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childless box. This step has a complexity of O(Np2) since it is not a translation operation, only a local
evaluation.

M → M

M → L

L → L

Upward Pass

Downard Pass

Figure 3. Diagram of FMM translations and interaction lists between two levels of a 2D grid. Note that the
grids on the right and left are identical, and are duplicated for the purpose of visualizing the upward and
downward passes.

D. Translation and Evaluation Operators

In three dimensions, multipole expansions are expressed in terms of spherical harmonics. The spherical
harmonics have a degree n and order m and are defined by the following formula:5

Y mn =

√
(n− |m|)!
(n+ |m|)!P

|m|
n cos(θ)eimφ (18)

where Pmn are associated Legendre functions. A truncated multipole expansion of order p about a box origin
representing a collection of K sources of strength qs located at spherical coordinates (ρ1, α1, β1)...(ρK , αK , βK)
with respect to the box centroid is defined by the formula:

Φ(r, θ, φ) =
p∑

n=0

n∑
m=−n

Mm
n

rn+1Y
m
n (θ, φ), Mm

n =
K∑
s=1

σsρ
n
sY
−m
n (αs, βs) (19)

where (r,θ,φ) are the spherical coordinates of the point where the multipole expansion is evaluated. Similarly,
the multipole coefficients Mm

n of the multipole expansion for a collection of K dipoles with strength µs and
orientation n̂s is

Mm
n =

K∑
s=1

µs
∂

∂ns

(
ρnsY

−m
n (αs, βs)

)
(20)

Each surface panel is represented by a collection of point sources and dipoles, and their strength and location
on each panel is given by the weights and spacing of a numerical quadrature rule. In Multipole to Multipole
step of the algorithm, multipole expansions of child boxes must be transferred to their parent box. Let (ρ,
α, β) be spherical coordinates of the parent box’s centroid with respect to the child box’s centroid. Then
the multipole coeffecients MT of the parent box are given by the following multipole translation formula

MT kj =


∑j
n=0

∑n
m=−n

Mk−m
j−n ·i

|k|−|m|−|k−m|·Am
n ·A

k−m
j−n ·Y

−m
n (α,β)

Ak
j

x |k −m| <= p

0 |k −m| > p
(21)

where

Amn =
(−1)n√

|n−m|! · |n+m|!
(22)
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The Multipole to Local translation is detailed below. Let (ρ, α, β) be the spherical coordinates of a centroid
of a box in a box’s interaction list with respect to the centroid of the box itself. Let Mm

n be the coefficients
of the multipole expansion of a box in the interaction list of this same box. Then the corresponding local
expansion coefficients about the center of the box is:

Lkj =

p∑
n=0

n∑
m=−n

Mm
n · i|k−m|−|k|−|m| ·Amn ·Akj · Y m−kj+n (α, β)

(−1)nAm−kj+n · ρj+n+1
(23)

The Local to Local translation is detailed below. Let (ρ, α, β) be the spherical coordinates of a child box’s
centroid with respect to its parent’s centroid. If Lmn are the coefficients of the parent box’s local expansion,
then the corresponding coefficients of the local expansion about the child box’s centroid are:

LT kj =

p∑
n=j

n∑
m=−n

Lmn ·Am−kn−j ·Akj · Yn−jm− k(α, β) · ρn−j
(−1)n+j ·Amn

(24)

The Local Evaluation is detailed below. The potential resulting from the evaluation of the local expansion
at spherical coordinates (r, θ, φ) with respect to a box centroid is computed as follows:

Φ(r, θ, φ) =

p∑
j=0

j∑
k=−j

LT kj · Y kj (θ, φ) · rj (25)

where LT kj are the coefficients of the local expansion representing the potentials of all cells which are

not nearest neighbors of the box. Note that there will be two sets of LT kj coefficients per childless box,
corresponding to the contributions from the source and doublet elements.

VI. Implementation and Results

This section will discuss the implementation of the FMM-accelerated BEM and present results of both
serial and parallel FMM-accelerated non-lifting potential flow solvers.

A. Parallel Implementation

Several options were considered for the parallel implementation of the FMM-accelerated BEM. Initially,
the code was written in MATLAB, but I soon realized that MATLAB is far too slow for an efficient im-
plementation of the Fast Multipole Method. I decided to go ahead and write the code in C++, sine an
object-oriented framework is really needed for the FMM algorithm. Upon writing the serial C++ code,
speed-ups of as many as four orders of magnitude were realized. The fact that the switch from MATLAB
to C++ increased performance so much steered me away from using Julia for this project, since I initially
viewed Julia as a scripting language. However, upon seeing some more Julia features as the class progressed
and listening to the project presentations, I would re-consider implementing my method in Julia.

I ended up choosing to implement my method in OpenMP, since it is easy to take a serial code and
add shared-memory parallel functionality and because I only envision seeing this type of code being run
on a laptop or workstation due to the fast runtimes. Another possible option would have been a GPU
implementation, but many laptops and workstations are not equipped with good computing GPUs, so the
GPU programming option was thrown out.

It took a good bit of effort to just get the serial code working, as the serial code is composed of 6,500
lines of code. However, once the serial code was validated, adding parallel functionality was relatively
straightforward. OpenMP only requires that the programmer add preprocessor directives to a serial code,
and almost everything else is handled internally. An example of the parallelized M2L translation function
is shown below:

// Mult ipo le to l o c a l
f o r ( i n t l ev = 2 ; l ev < Nleve l ; l e v++){
#pragma omp p a r a l l e l f o r

f o r ( i n t i =0; i<l e v e l i n d e x [ l ev ] . idx . s i z e ( ) ; i ++){
i n t bx = l e v e l i n d e x [ l ev ] . idx [ i ] ;
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i f ( boxes [ bx ] . i s e v a l b o x ){
f o r ( i n t j =0; j<boxes [ bx ] . i l i s t . s i z e ( ) ; j++){

i f ( boxes [ boxes [ bx ] . i l i s t [ j ] ] . i s s ou r c ebox ){
m u l t i p o l e t o l o c a l ( boxes [ boxes [ bx ] . i l i s t [ j ] ] , boxes [ bx ] ,Bnm,Anm, i l i s t c o n s t s [ bx ] [ j ] , f i r s t t i m e , compute s ing le , compute double ) ;

}
}

}
}

}
In this function, the only change from the serial case was the addition of the #pragma omp parallel for line.

B. Solving the System of Equations

The discretized version of the Galerkin BEM given in equation 17 can be written in matrix form as a linear
system of equations:

Aµ = b (26)

where the matrix A will be referred to as the influence matrix, and b is the right hand side representing the
monopole contributions. In the full (non FMM-accelerated) BEM, the system is generally solved with an
iterative solver such as GMRES. Since we are solving a Fredholm equation of the second kind, the system of
equations is usually well conditioned. For most cases that have been considered, GMRES converges within
100 iterations. However, this is sub-optimal and better convergence can be obtained with a preconditioner.
In the FMM-accelerated BEM, the system must be solved with an iterative solver, since the influence matrix
is never explicitly calculated. It would seem that since we don’t have the influence matrix,it would be very
difficult to generate a good preconditioner. However, if we consider what the FMM algorithm does, we can
make use of the FMM method itself to create a sparse preconditioning matrix.

We can make the assumption that near-field interactions are going to play a larger role than far-field
interactions. Therefore, in the full BEM, entries in the influence matrix corresponding to near-field inter-
actions will have a much larger magnitude than matrix entries corresponding to far-field interactions. This
suggests that generating a sparse matrix including only near-field interactions will represent the structure
of the original, non-FMM matrix well. LU factorization can then be performed on this near-field matrix to
create the preconditioner P = LU . The near-field matrix is shown below for the case of a business jet:

Figure 4. Near-field influence matrix.

MATLAB’s gmres function was used to solve solve the linear system. gmres was provided with a function
handle to a C++ MEX-file that returns the matrix-vector product and also returns the sparse near-field
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matrix. Using a preconditioner reduced the number of iterations required from ∼ 50 to ∼ 5, resulting in a
decrease in computational time of an order of magnitude.

C. Serial FMM Accelerated BEM Accuracy

A sphere consisting of 855 elements was used as a test case for the FMM solver since the analytical solution is
known. The FMM solution to the sphere was compared to the direct BEM solver. Both the FMM and BEM
solvers were solved with GMRES13 to machine precision, and the only difference was in the approximate
matrix-vector product of the FMM compared to the machine precision matrix-vector product of the full
BEM solver. The potential on the sphere using a p = 2 multipole expansion and L2 norm between the two
solutions for increasing values of p are shown beow.

Figure 5. Potential over a sphere for p = 2 and V∞ = [1, 0, 0] (L) and error between the FMM and direct BEM
(R).

Even with p = 2, the error in potential is small, however the error in pressure is larger. This is due to the
fact that the pressure is obtained by differentiation of the potential field, leading to a reduction in pressure
accuracy. If a higher pressure accuracy is needed, the multipole order can be increased to obtain the desired
fidelity.

D. Parallel Results

A mesh of a falcon buisness jet was used as a test case for the parallel FMM-accelerated BEM implementation.
The mesh consisted of 5234 elements and 2619 nodes. The potential distribution obtained using one core
and a multipole expansion order of p = 2 is shown below:
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Figure 6. Falcon business jet

Simulations were run on my laptop which has an intel i7-3610QM 2.3GHz quad-core CPU for increasing
number of processors and multopole orders. The maximum number of elements allowed in each childless box
was set to 10. The code was tested for up to p = 5, which is far higher an order than is needed to obtain
accurate results. Accurate results are obtained with only p = 2. Below is a table comparing the parallel
solution time to that of the serial code.

Table 1. Speedup compared to 1CPU

p 1 CPU (s) 2 CPUs 3 CPUs 4 CPUs

1 5.2414 1.24 1.36 1.37

2 8.6618 1.39 1.59 1.70

3 23.8976 1.65 2.04 2.34

4 52.4548 1.73 2.26 2.59

5 105.9322 1.76 2.38 2.79

Table 1 shows that only a slight speed-up is observed for p = 1, but as the multipole expansion order
increases the parallel efficiency also increases. A maximum speed-up of a factor of 2.8 is realized using a
fifth order multipole expansion and 4 CPUs. Some of the multipole translation functions are more easily
parallelized than others, and this is likely the reason the performance increase is not constant for all multipole
expansion orders. For example, the L2P translation will never have multiple threads trying to read from
the same memory address. However, this can occur somewhat frequently in the M2M translation. The
implementation could be improved by creating multiple instances of some of the data arrays, but this would
also increase the memory required.

E. Large Test Case

The FMM scalability,ideally O(N), was tested by simulating a four-engine jet with a fine discretization. The
surface consisted of ∼ 180, 000 elements. The simulation was run on 4 CPUs using a p = 2 expansion order,
and the resulting potential distribution is shown below:
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Figure 7. Potential Flow Solution. Runtime time: 4 minutes on 4 CPUs

The mesh for the four-engine case and resulting pressure distribution are shown below.

Figure 8. Coefficient of Pressure on surface

The solution time for the four-engine jet was 240s, compared to 5.1 seconds for the falcon mesh using
4 CPUs. The ideal O(N) sped-up would have resulted in a runtime of 175 seconds for the four-engine jet.
Therefore, the FMM method did not scale quite as O(N), but came close. The reason it may not have
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reached O(N) scaling is that the memory access was more intensive for the larger case, and may have slowed
memory reads across the board. Another possibility is that the geometry of the two aircraft, and hence the
two octree decompositions, were entirely different from one another.

VII. Conclusions

A high-order panel method has been developed capable of predicting the potential flow about arbitrarily-
shaped closed surfaces. The potential flow equation was discretized using the Boundary Element Method,
which was accelerated by the Fast Multipole Method. The code was parallelized using OpenMP, resulting
in an implementation which can see speed-ups of a factor of 2.8 for large p, and a factor of 2 for moderate
expansion orders on 4 processors.

It is unlikely that an ideal linear speed-up will be obtained using OpenMP since it implements shared-
memory parallelism. Unless large data arrays are explicitly copied, there will always be times when multiple
threads will try to read the same data from memory simultaneously, which decreases performance. It would
be interesting to implement the code in Julia to see how a Julia version of the code would scale.
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