
Parallelized Visualizization of N-body Cosmological
Dark Matter Simulations

Greg Dooley
MIT 18.337 Parallel Programming

Dec 17, 2012

Abstract

300,000 years after the Big Bang, the universe consisted of a nearly perfectly ho-
mogenouse distribution of baryonic matter and dark matter. Over the next 13.7 billion
years, gravitational forces caused overdense regions to collapse into the galaxies we ob-
serve and live in today. Astrophysicists like to further understand and test this process
with massive gravitational simulations of the universe. One natural thing to do is to
visualize the output. Since datasets can range from 4 to 30 GB, computing projected
density fields can be a long computational task. Computing the density in parallel can
make dramatic speed improvements and hence is a very useful thing to do. Having
access to several � 4 GB datasets, I found and implemented a visualization technique
and made it parallel using julia code. The parallelization reduces what is almost a 2
hour serial problem into 3 minute computation when 50 processors are used.

1 Background

The universe consists of on the order of 100 billion galaxies. Each galaxy is composed of
stars at its center in a long flattened shape, like a disk, surrounded by a roughly spherically
symmetric distribution of dark matter. Dark matter is a nearly collosionless, non self-
interacting substance that interacts graviationally, but not with light. It makes up � 84%
of the matter content of the universe. Evidence of dark matter surrounding galaxies, called
a halo, exists from observations and simulations. These structures can be simulatd by
modelling the distribution of dark matter in the early universe, assuming a certain cosmology,
assuming a temperature of the dark matter, approximating the density distribution with

1

particles, then evolving that distribution under its own gravitational dynamics. Simulations
output the position and velocity of every particle, 134, 217, 728 particles of the same mass
in the data set used here. With this information it is possible to visualize the density field
and see the overdense halos that would surround galaxies like the Milky Way. The volume
of the simulation is a cube of specified size with periodic boundary conditions.

2 Simulation Code

The N-body code used to produce the simulations was GADGET 2 written by Volker Springel
[1]. GADGET 2 is a smoothed particle hydrodynamics code that evolves collisionless N-
body particles gravitationally. At each adaptive timestep it approximately solves Poisson’s
equation for gravity: ∇2Φ � 4πGρ. In order to make the computation tractible, it computes
local gravitaional forces with a hierarchical multipole expansions, and long range forces with
faster, but less accurate fourier techniques. For visualization purposes, this process is only
important in that it defines a proscription for computing density fields, and the density field
is what I aim to visualize.

Gravitating objects in the simulation are represented as massive particles with a precise loca-
tion. The real matter distribution of the universe however is much more smooth. Simulated
orbits around point sources leads to unphysical paths where energy and entropy conservation
is violated. To avoid these issues, the mass of a particle is smoothed out in a spherically
symmetric distribution with radius h, the smoothing length. The smoothing length is chosen
such that the estimated mass in the volume 4

3
πh3ρ is a constant. Thus low density regions will

have a large smoothing length, and high density regions a small smoothing length. Particles
are smoothed out according to the Monaghan kernal W pr, hq given by equation 1 and plotted
in Figure 1. Note that no density contributions are made beyond a radius r ¡ h.

W pr, hq �
8

πh3

$'&
'%

1� 6
�
r
h

�2
� 6

�
r
h

�3
, 0 ¤ r

h
¤ 1

2
,

2
�
1� r

h

�3
, 1

2
 r

h
¤ 1,

0, r
h
¡ 1.

(1)

3 Computing Density

In order to produce a two dimensional density projection of the simulation, the volume of
interest and the dimensions in pixels of the output image must be specified. Each pixel stores

2

Figure 1: Shape of Monaghan cubic spline used to smooth out the density of particles.

the sum of all density conributions made by nearby particles summed in a column over the
entire depth (3rd) axis. That is, if ρi is the density of pixel i, mj is the mass of particle j,
hj is the smoothing length of particle j, and rij is the distance between particle j and the
center of pixel i, then

ρi �
Ņ

j�1

mjW p|rij|, hjq (2)

where N is the total number of particles and W is the kernal function defined in Eq. 1.
The overall density is computed by looping over every particle and adding density values to
each pixel whose center falls within a radius h from the particle center. This is visualized
in figure 2. Two minor complications occur when the smoothing radius is too small for any
contributions to be made, see Figure 3, and when the region of interest to draw encompasses
the entire size of the box. A minimum h is enforced to ensure each particle contributes to
at least one pixels. When the entire width, height, or depth is visualized, periodic boundary
conditions are applied, but otherwise are not.

4 Data Sets Used

Two types of data sets were used for visualizations. One was a set run by a recent MIT
PhD graduate in astrophysics on a computer cluster at Harvard. Each simulation contained
134, 217, 728 particles, had 3.3 GB of position data, and 1.1 GB of smoothing data. The
boxsize was 25 megaparsecs, which is enough to contain � 100, 000 galaxies. There were
six different simulations each run with slightly different input cosmologies. The effect is

3

Figure 2: The pixel at the end of the red line will gain a density contribution of W pr, hq from the
particle drawn

Figure 3: Smoothing radius too small for particle to contribute anywhere. h will be adjusted to
contribute to nearest pixel.

simulations with the same structures, but slight deviations from each other. See Figure 6 for
these visualizations. A second data set was run by the Aquarius Consortium [2] in 2008. It
only contains a single galaxy, with a box size of 100 kiloparsecs, and 606, 866, 170 particles.
It has 16 GB of position data, and I do not have any smoothing data for the box. I assumed
a value of .25 Kpc for the smoothing length of all particles.

4

5 Parallelizing the Code

All code to produce the density grid is written in Julia. A user can specify an arbitrary
number of processors, up to the machine’s limit, on the command line to run the code (i.e.
¿¿ julia -p 5 parallelVis.jl). The code splits up its data set accordingly and combines its
result at the last step, following the general flow listed below.

1. Read file headers to determine number of particles

2. Allocate space in distributed arrays to store position and smoothing length data

3. Read all data in parallel into distributed arrays

4. Wait for reading tasks to finish

5. Calculate density projection onto pixel grid on each processor’s own set of data

6. Sum the results

The following parallel Julia commands were used for the specified reasons:

• remote call wait - load reading and density computation functions to each processor

• darray - used to allocate distributed array space for positions and smoothing lengths

• @spawnat processor ID - used to spawn reading and computing tasks

• RemoteRef - to keep track of when tasks finish

• wait - wait for reading tasks to finish

• fetch - combine computed results into one density field.

6 Parallelization Performance

The particle data is stored in multiple files, and I previously had a python program to
read the data one file at a time. Translating this code into Julia led most naturally to either
reading in data in serial, or on at most X processors, where X is the number of files. Reading
the data in serial, then using the call distribute to distribute the data into a distributed array
on 5 processors took 13.9 seconds. In order to take advantage of parallel reading, I rewrote
the read-in files to read any specified range of contiguous particles, whether they stretch over
many files or not. I then also allocated space in a distributed array for each processor, and
read equal segments of data in parallel. With 5 processors, the read time was reduced to 4.6

5

seconds. The performance gain by reading the data in parallel is quickly saturated by 12
processors as seen by the red line in Figure 4.

An oddity in performance I noticed was in the order in which I spawned processes on each
processor. If I spawned a computational task on the master processor first, there would
be a long delay of about 1 second before the next task was spawned. Thereafter each task
was spawned in quick succession, about .001 seconds per spawn. By reversing the order,
and spawning a task on the master processor last, I avoided that extra second of wait time.
However, the the first spawned task still always took longer at � 0.055 seconds. I interpreted
this as the master node is slowed down on its other operations by spawning a task, and that
spawing a task of a particular operation once puts something in local memory than is used
to spawn the same task again faster.

The performance gain on parallelizing the density calculation is much more dramatic. I ran
timing tests on 1

4
of the data set from 1 processor to 50 processors, and plotted the compute

time vs. number of processors on a log-log scale in Figure 4. The ideal case of time 9 n�proc1
is also plotted. As can be seen, the actual performance is almost ideal, deviating noticeably
only after 20 processors. Thus this visualization compuation is an excellent program to take
advantage of parallelization.

As the size of the data set is increased, more time is spent moving data across processors and
the performance gain is less ideal, but still excellent. For example, with 30 proccessors on
1{4 of the data set, it took 63.24 seconds to compute. With 30 processors on the full data set,
it took 284.6 seconds, or 31 seconds longer than the anticipated scaling if only computing,
not data movement, was a factor. As the number of pixels specified increases, the number
of pixels each particle contributes to increases as N2, so the total compute time increases as
N2. With the dataset held fixed, parallelization becomes more ideal as the number of pixels
is increased.

7 Visualization

A user specifes the size of the grid in pixels to produce. He also must specify the physical
dimensions of the region of interest to visualize, the center position of the visualized region,
the side of the box to view (e.g. X-Y, Z-X, Z-Y), and whether or not each dimension is
periodic. Julia writes the output data to file, where I then read it back in with a Python
script. The values of log10pρq are normalized into a 0 � 1 scale. I meticulously selected
colors at different thresholds between 0 and 1 to color the image. The color of densities in
between the chosen thresholds is interpolated between the two bounding colors. Results of

6

Figure 4: Run time on 1.1 GB of position and smoothing data, 1
4 of data set. Parallel performance

gained on reading in data quickly saturates after N � 5 processors. Parallel performance on density
computations close to ideal performance up to 50 processors.

this process are shown in Fig 6 and 5. I additionally wrote a code that computes the density
field in three dimensions, but was not able to install a reasonalbe 3D visualization program
in time to view the 3D images.

7

Figure 5: X-Y axes view of simulation on left and Z-Y axes view right.

Figure 6: Visualization of the same region of space with two different cosmologies.

8

References

[1] V. Springel. The cosmological simulation code GADGET-2. mnras, 364:1105–1134,
December 2005.

[2] J. F. Navarro, A. Ludlow, V. Springel, J. Wang, M. Vogelsberger, S. D. M. White,
A. Jenkins, C. S. Frenk, and A. Helmi. The diversity and similarity of simulated cold
dark matter haloes. mnras, 402:21–34, February 2010.

9

