
Documentation in Julia

Adin Schmahmann

Electrical Engineering and Computer Science

MIT

Cambridge, USA

adin@mit.edu

Abstract—The Julia Programming language currently lacks

any sort of programmatic documentation; specifically it lacks

function annotation and any way to define the proper use of an

abstract type, or interface. However, Julia’s macros can be used

to operate on pre-parsed code and can therefore both augment

and define new syntax to be used in Julia. Therefore, three

macros, @interface, @implements and @doc have been

implemented to create interfaces and enforce their

implementations, as well to annotate function declarations.

Additionally, functions have been created to search through

function metadata to help programmers find the functionality

available in the libraries they already have access to.

Keywords—Julia; documentation; interface; macros

I. INTRODUCTION

Julia is a high-level, high-performance dynamic
programming language (http://julialang.org/). It is syntactically
similar to a number of dynamic programming languages, such
as MATLAB®, Python and Lisp. Julia’s features include
optional typing and multiple dispatch, the ability to have
multiple functions with the same name where the actual
function called depends on both the function name and type
signature. However, due to Julia’s multiple dispatch system,
there is no way to define a function as inherently related to a
particular type or class, making it difficult to determine what
code must be written to properly create a subtype of an existing
type. Additionally, Julia does not have a built in way of
associating comment text with a function, making it hard for a
programmer to find if there exists a library function that can
help him or her with a particular task. I have managed to use
Julia’s macro system, derived from Lisp, to create three
macros, @doc, @interface and @implements to annotate
functions, and declare what functions must be written to
properly create a subtype of an existing type. Finally, I have
created some useful sample functions for helping users search
through the annotated code base.

II. INTERFACES

Interfaces are an abstraction that describes how components
interact with each other. In object-oriented programming
languages, interfaces generally define a set of methods that
need to be implemented by a given class in order for that class
to be compatible with the interface. The usefulness of
interfaces stems from the fact that they are very similar to types
and in the same way that a variable can be of a type T, it can

also implement an interface I. This means that programmers
can declare a function such as func(x::I) that will take as an
input any variable, x, that implements the interface I.

In Julia, the lack of interfaces means that a programmer
must either look at external documentation or source code in
order to determine how to use a function that operates on an
abstract type. For example, String, is an abstract type and as a
result all functions that take in arguments of type String
implicitly rely on some definition of what a String is.
Unfortunately, the only way to find out what is required for a
type to properly sub-type String is by searching through source
code until one finds the code segments in Figure 1.

Fig. 1. The length(s:: SubStr) and next(s:: SubStr,i::Int) functions are

required to be implemented for the subtypes SubStr of the type String, but this

is the only place in the code that it is documented.

As can be seen from Fig. 1, the two functions,
length(s::SubStr) and next(s::SubStr,i::Int) must be defined in
order for a sub-type, SubStr, of String to be truly treated as a
String. Therefore, it would seem appropriate for there to be
some documentation stating the dependence of SubStr on the
functions length(s::SubString) and next(s::SubString,i::Int).
Additionally, since this dependence is actually a requirement
for the code to be logically consistent it is reasonable that the
language actually enforce this relationship – which is
effectively the relationship of an interface (String) with another
type (SubStr) (note: the interface name does not have to be the
name of an abstract type, however once Julia implements
multiple inheritance from abstract types this is the suggest
method of use).

Therefore, I have implemented two macros @interface and
@implements that deal with the declaration of interfaces and
their enforcement. An example of the macros in use can be
seen in Fig. 2. The main syntactic choice made in the macros
was the decision to use * to denote the type that will be
implementing the interface, all other parts of the signatures of
the functions to be declared as part of the interface are as
expected. In terms of the implementation, the major decision
was to use an external dictionary to store all of the declared
interfaces. This was chosen since there is currently no way in
Julia to either augment existing types, nor to sub-type concrete
types, this means that it is impossible to augment, for instance,
the definition of a Type to include interface information.

http://julialang.org/

Fig. 2. Example of how to declare the String abstract type/interface and how

to implement it for the sub-type of String called UTF8String.

Fig. 3. How the String interface could be declared if interface declaration

was built into Julia, note that the syntax is nearly identical to the current

interface declaration syntax and analgous to the type declaration syntax.

There are a number of features that are yet to be introduced
into Julia, but that are to be forthcoming that will make
interface declaration and validation much cleaner. Specifically,
when inheriting from multiple abstract classes is implemented
then abstract types will be very similar to interfaces and could
even be declared in a manner much like types (see Fig. 3).
Additionally, once Julia additionally implements hooks for
executing functions after a module loads then the interface
validation will not require an additional line of code, but
instead the interface can be validated by a programmatically
inserted function hook that occurs after a module is loaded.

III. DOCUMENTATION

In addition to the documentation that is implicit in the
declaration of interfaces, Julia is severely lacking in methods to
explicitly document code. Currently, Julia’s methods of
documentation include either inline comments, which the
parser does not include as part of the code base, or a large
“help” text file. However, having a system in place, like the
“magic lines” at the beginning of a MATLAB function or the
special block comment syntax before a C# or Java function
declaration, would be very helpful for commenting Julia code.
While the comments themselves are useful for those reading
the source code, the goal is to allow the creation of tools to
allow programmers to find what they are looking for in a
library of source code, without having to read through all of it.

In this fashion programmers can actually make full use of the
abstractions provided by libraries of types and functions and
focus on their own new creations.

I have made a simple macro, the @doc macro, which deals
with annotating functions, and can easily be extended to
annotate other code elements such as types. The @doc macro,
like the @interface macro, also makes use of a dictionary to
store its information (again, since types such as Function
cannot be changed from within Julia to have additional fields).
An example of how to use the @doc macro is given in Fig. 4.

Fig. 4. Example of how to document a function

IV. SEARCHING THE DOCUMENTATION

The above suggestions and associated macros include
requiring relevant code to be close together via interface
declaration and suggesting that functions (and other
definitions, such as type definitions) have documentation near
their declaration. However, one of the fundamental reasons for
having different forms of documentation programmatically
accessible is to allow programmatic sifting of the
documentation. Below are some ways in which a programmer
might want to search through the documentation code base,
and these have all been implemented.

Scenarios

 Search for all functions with a particular signature

o Ex: All functions of the form
func(a::Array,s::String)

 Search for all functions that have a specific kind of
signature

o Ex: All functions that can use a Float64

 Search through all documentation for a particular clause

o Ex: All annotated elements containing the
text “SVD” or “Hash”

 While these above scenarios have already been
implemented in Julia, many more can be easily implemented as
regular Julia functions by members of the community.
Furthermore, many of these functions could be integrated into
an IDE to allow for powerful code navigation that could
parallel that of the IDEs of many object-oriented, statically
typed, languages such as the combination of Java and Eclipse,
or C# and Visual Studio.

V. CONCLUSION

While Julia is a very powerful and expressive language, it
was lacking in documentation – especially documentation
which was easily programmatically accessible. However, after

implementing the @doc, @interface, and @implements macros
this is no longer the case. Julia programmers can, and should,
use the macros to annotate their code in order to make their
code more easily navigable for both themselves and others. In
the future hopefully the @doc, and @interface macros can be
integrated more naturally into the language themselves and the
@implements macro will at that time be able to be disposed of
entirely. Additionally, some very useful sample search
functions have been created to sift through the documentation
made available by the macros. However, there are many more
ways documentation could be searched and the accessibility of

the annotations will allow any member of the Julia community
to easily create a filter of his or her own.

ACKNOWLEDGMENTS

I would like to thank Prof. Alan Edelman for all of his
assistance over the duration of this project. Additionally, I
would like to give a tremendous thank you to Jeff Bezanson for
all of his time and help discussing what improvements could be
made to Julia and the best ways to proceed.

