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1. Introduction

Many different real-life phenomena are modeled by Partial Differential Equations
in order to reproduce the real system in a mathematical framework. Often, numerical
solutions for such models involve discretizations of the domain and the operators,
reducing the problem to solve a system of linear equations Ax= b. As the size of the
matrix A becomes larger, direct methods are no longer useful in practice. In such
cases, iterative methods become very important and in this project I will focus on
one of them: the Algebraic Multigrid Method.

In contrast to Geometric Multigrid, which needs the operator and domain to be
discretized in coarser grids, the Algebraic Multigrid (AMG) approach is only based
on the entries of A, like a black-box solver of Ax= b. While the Geometric Multigrid
relies on a fixed hierarchy of grids, the Algebraic Multigrid adjusts the hierarchy
to maintain fixed and simple smoothers on each step [1]. Additionally, the AMG
algorithm has the advantage that it can be used for systems of linear equations that
do not arise from differential equations [2].

In this project, I review the classical (sequential) AMG algorithm. An overview
is shown in sections 2, 3 and 4. All components, smoothing, influences, interpolation
weights and coarsening are analized in detail in sections 5 to 8. In section 9, the
classical Ruge-Stueben sequential coarsening is described. Different strategies to
implement the coarsening pre-processing step in parallel is then be described in
section 10. The Coarse Grid Classification described in section 11, seems to avoid
most of the disadvantages of the other parallel approaches and reveals itself as one
of the best known methods for parallel coarsening.

2. Basics of Multigrid Methods

Given a PDE Lu=g on a domain Ω, a suited discretization of size h reduces to
problem to solve a linear system of equations Ahxh = bh. On one side, iterative meth-
ods work faster with better initial guesses. On the other side, coarser discretizations
of the domain Ω generate smaller systems of equations and are thus much easier to
handle. Multigrid methods take advantage of both: use information from coarser
discretizations to improve the solution in finer discretizations.

Let A2hx2h = b2h be the discretized version of the PDEof size 2h. There is no need
to solve the problem completely in the lower level. Indeed, a rough approximation
might be enough.
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2.1. Geometric versus Algebraic Multigrid

In the previous section, the notion of geometric multigrid method was described.
However, the Algebraic Multigrid (AMG) method is a similar one in which there is no
PDE and no physical domain and the only given information is a system Ahxh = bh.
Whenever the geometry of the problem is known, coarser discretizations are easy to
generate.

In algebraic multigrid, coarser versions of Ahxh = bh must be generated carefully.
Note that it is not enough to delete a few rows and columns, because vital couplings
between entries will be lost. This reveals the key importance of coarsening in the
Algebraic Multigrid case and this project will give this step a high priority. From
now on, we will only focus on AMG.

3. Key multigrid components

The basic theory of AMG assumes that Ah is a symmetric positive definite
M-matrix, i.e., the diagonal is positive, the non-diagonal entries are non-positive and
the sum of each row is also non-positive. Although this might be seen as a strong
assumption, usually AMG also works reasonably well for non M-matrices.

We should define some key components for any multigrid algorithm. Given a
system Ahxh = bh of size N , we need to construct abstract ”grids” Ω1⊃Ω2⊃···⊃ΩM ,
where Ω1 ={1,2,. ..,N} represents all variables of xh, and ΩM is the coarsest version.
For visualization purposes, the set Ω1 can be thought as uniformly distributed points
on an interval.

In order to interchange information between grids, we need transfer operators.
The interpolation operator Ik

k+1 from coarser grid Ωk+1 to finer grid Ωk will be
defined as a linear comination of the values at the coarse grid points. The coefficients
of the linear combination will rely heavily on the coarsening process and thus we will
define them later in sections 7 and 8. The restriction operator Ik+1

k from finer grid
Ωk to coarser grid Ωk+1 for each k is simply the transpose of the interpolation operator.

We also define grid operators, A1, A2,...AM , which represent the action of the
original matrix A1 =Ah on the different grid levels (notation is changed to avoid
the size h of geometric multigrid). The classical way is to use a so called Galerkin
approach by defining: Ak+1 = Ik+1

k AkIk
k+1

Finally, we need to use a relaxation scheme at each step. This is an iterative
method like of a Gauss-Seidel or relaxed Jacobi scheme.
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4. Two-cycle structure

Assuming these components were all defined and available, a simple pseudocode
of a Two-cycle is given by [3]:

• Algorithm: TWOAMG(u,b,ν1,ν2)
• Pre-smoothing: With initial guess u, perform ν1 relaxation iterations on

A1u= b obtaining a new u.

• Coarse grid correction: Restrict the residual r≡ I2
1 (b−A1u), and relax ν2

times on A2e= r with initial guess zero, obtaining some e.

• Prolongation of the error e using the interpolation operator and correct the
solution by: u←u+I1

2e.

Note that instead of transfering the solution between grids, we restric the resid-
ual and interpolate the error. This algotithm should be iterated until convergence,
improving the initial guess at each iteration.

5. Relaxation: Gauss-Seidel method

In AMG the relaxation scheme is fixed and the preferred one is the classic Gauss-
Seidel method. We consider the problem of solving Ax= b. Let A be written as
A=D−L−U , where D is diagonal, L lower and U is upper triangular, with diagonal
zero. The usual Gauss-Seidel iteration is written as[4]:

xr+1 =Gxr +(D−L)−1f (5.1)

where G=(I−(D−L)−1A) is the Gauss-Seidel iteration matrix. Substracting from
the exact solution x, we may write:

er+1 =Ger (5.2)

where er =xr−x is the iteration error. Since we do not know the initial error e0

this equation is useless for computing the evolution of the error. However, it is
useful deriving theoretical properties and results. One of this properties is related
to the smoothness of the error. Methods like Gauss-Seidel and the under-relaxed
Jacobi when applied to Ax= b are called smoothers, in the sense that high fre-
quency components of the error on a geometric grid decay much faster than lower ones.

5.1. Algebraic vs Geometric Smoothness

When the problem is purely algebraic and no grids are available, Fourier analysis is
useless and we need to figure out a specific meaning for smooth errors. In fact, a given
vector of values may appear to be geometrically oscillatory or not, depending upon
the interval size of the chosen grid. In the algebraic context, an error is considered
smooth if an iteration like 5.1 has almost no longer influence on the error. In other
words, an error e is considered algebraically smooth if at some iteration step:

||Ge||A≈||e||A (5.3)



4 18.337 Project

where ||y||A = 〈Ay,y〉1/2 is the norm induced by A. In [5], Stueben presents a simple
example to show that algebraic smoothness do not need to be geometrically smooth:
in fact, it might be quite oscillatory.

5.2. From smoothness to interpolation

Having defined a relaxation scheme, our goal is to construct coarse grids and
interpolation operators. Thus, it might be interesting to use the algebraic notion of
smoothness of the error, to design effective interpolation strategies. It can be shown
[6], that (5.3) implies:

〈D−1r,r〉<< 〈Ae,e〉
where r=Ae is the residual. This can be written as:

∑

i

r2
i

aii
<<

∑

i

riei

Since this is valid for the sum, we might expect that such a relation is still valid
comparing term to term. Therefore, at least in average for all i:

|ri|<<aii|ei| (5.4)

This is commonly interpreted by identifying smooth errors with small residuals, i.e.
Ae≈0. This is a key assumption for the next step, in which the coarse grids and
interpolation weights will be chosen. Furthermore, we may conclude this section by
observing that Ae≈0 implies:

aiiei≈−
∑

j 6=i

aijej (5.5)

Notice that this means that smooth errors have the property that each component is
aproximately a weighted average of the rest. This is not enough, but it gives a cue
to begin the discussion about interpolation weights.

6. Influence: strongly and weakly

Although (5.5) relates the i-th component of the error to every other component,
the weights depend on the entries of the i-th row of the matrix A, which in most
applications is not dense. Therefore, we might expect that only a few components
have a strong influence on ei, depending on whether aij is relatively large or small
with respect to other entries on his row.

We will say that the variable xi strongly depends on the variable xj if [6]:

−aij≥θmax
k 6=i

{aik} (6.1)

where θ is a positive threshold value and is typically set to be 0.25 [3]. This value is
reasonable since it corresponds to the threshold under which the 5-pt laplacian stencil
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Fig. 6.1. 5-point Laplacian stencil and corresponding row in the matrix

has its nodes strongly coupled (see Figure 6.1).

If (6.1) holds for some j, we say that j∈Si. If (6.1) does not hold but aij 6=0,
we say that the variable xi depends weakly on xj and write, j∈Wi. For example,
for non M-matrices, this definition implies that positive but off-diagonal entries only
weakly influence the same row variable [7]. The sets Si and Wi are called the set of
strong and weak dependencies of variable xi.

7. Coarsening and Interpolation

Assume we are at some level k of the typical multigrid process, where a grid Ωk

and a grid operator Ak are given and we want to choose a grid for the next lower
level of the process. We are interested in splitting Ωk =F

⋃
C, where C will be called

the coarse-grid points and F the fine grid points. The set C will be identified with
our next grid Ωk+1.

If we look to define interpolation operators from Ωk+1 to Ωk, we only need to
care about points in F , since values in C are directly transferred from Ωk+1. Given
any i∈F , we need to define not only which grid values in Ωk+1 influence the value at
i∈F , but also how to weight these values, i.e:

(Ik
k+1e

k+1)i =
{

ek+1
i i∈C∑

j∈Ci
ωije

k+1
j i∈F

(7.1)

where Ci =Si

⋂
C is the set of points in Ωk+1 with strong influence in i∈F . Of

course, there are also points in F
⋂

Si and F
⋂

Wi which influence i∈F , at least
weakly. Our goal is therefore to include all these dependencies in the weights ωij , so
that (7.1) holds.

8. Interpolation Weights

We will assume first that the appropiate splitting Ωk =F
⋃

C has been defined
and we will try to obtain the interpolation operator as in (7.1). Ignoring the terms
aij =0, we can rewrite (5.5) as:

aiiei≈−
∑

j∈Ci

aijej−
∑

j∈F
⋂

Si

aijej−
∑

j∈F
⋂

Wi

aijej (8.1)

The last two sums, which depend on fine-grid points, have to be rewritten to obtain
an interpolation formula like (7.1). First, in F

⋂
Wi we will approximate ei≈ej since
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aij is relatively small [3], and the approximation (8.1) should still hold.

Next, we need to redistribute the influence of points in F
⋂

Si, among the points
in Ci. This requires an heuristic criterion for the step where we obtain C and F [3]:

• Criterion 1: for each i∈F , each j∈Si should be either in Ci or it should
depend itself on at least one point of Ci, i.e. Sj

⋂
Ci 6=∅

Therefore, we are allowed to rewrite each ej for j∈F
⋂

Si as a weighted average
of the corresponding elements k∈Ci obtaining:

ej≈
∑

k∈Ci
ajkek∑

k∈Ci
ajk

=
∑

k∈Ci

âjkek (8.2)

where âjk = ajk∑
s∈Ci

ajs
. This sounds reasonable, since the dependence is directly

related to the size of the ajk’s. Thus, (8.1) becomes:

(aii +
∑

k∈F
⋂

Wi

aik)ei≈−
∑

j∈Ci

(aij +
∑

k∈F
⋂

Si

aikâkj)ej

(for simplicity, there is a slightly interchange of index between j and k with respect to
what they were in (8.2)). Therefore, we have obtained the appropiate interpolation
weights which satisfy (7.1):

ωij =−
aij +

∑
k∈F

⋂
Si

aikâkj

aii +
∑

k∈F
⋂

Wi
aik

(8.3)

9. Sequential Coarsening

As stated in the previous section, we will use Criterion 1 when choosing
which points we will drop from the fine-grid in order to construct the coarse-grid
points. It is important to point out that the coarse-grid points in C, are also fine-
grid points. The notation F , is reserved for those points which are exclusively fine
and not coarse-grid points. In general, I follow the classical guidelines described in [5].

Note that a coarse grid with too many points will need more work in this and
lower levels. Although in such cases the interpolation of the error to the finer level
will be done more accurately, we will prefer to control the size of C with an additional
criterion. Indeed, we will consider the following heuristic criteria:

• Criterion 2: No C-point should depend strongly on another C-point.

The Criterion 1 has to be satisfied strictly, because our weights (8.3) depend
strongly on this assumption. Having said this, the Criterion 2 will be applied
whenever this does not affect the fulfillment of Criterion 1. This coarsening strategy
is usually implemented in two steps.
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1. First Step: In the first step, we try to satisfy the goal of Criterion 2: keep
C as small as possible. Thus, points which have a strong influence on a large
number of points are preferred as C-points. Let us define ST

i to be the set of
points which depend on i strongly as in (6.1). Considering the cardinality λi

of those sets, we select the point with the largest λi as our first point of C.

Next, by Criterion 2, all points in ST
i are set to be in F . It is interesting

to notice that those unassigned points which also strongly influence the
new points in F may be important for accurate interpolations and they
should more likely be in C than in F . This preference is implemented by in-
crementing λj =λj +1 for each point j which strongly influences any F -point.

This procedure is repeated with the unassigned points, by taking the point
with the largest λi, and so on until all points are either in C or in F .

2. Second Step:1 In the second step, we look for violations of the Criterion 1
and try to fix them by moving points from F to C, even if Criterion 2 is no
longer valid.

With this in mind we should test thoroughly the set F to make sure that
each point j∈F

⋂
Si depends strongly on at least one point in Ci. In other

words, if there are any strong connection between two F -points, these should
share the at least one C-point which influences both strongly.

Since we would like to move as few points as possible to keep our set C small,
once we find a j∈F

⋂
Si for some i∈F , that has no strong dependence on

Ci, we do not move j immediately to C, just tentatively. If this change also
solves the problem for every other element in F

⋂
Si, the change is made

permanent. If another point also has no strong dependence on Ci, even with
j∈Ci, we assume that the problem is with i and not with j. Therefore, j is
returned back to F and i is moved to C, solving both dependence problems
at once while keeping C as small as possible.

In practice, there are just a few cases where points will be moved to C in
the second step. This means that the first step is not only a fast algorithm,
but also performs reasonable well for Criterion 1. The sequential algorithm
is illustrated in Figure 9.1 for the 5-point laplacian stencil, where C-points
are blue, F -points are red and the numbers indicate the cardinalities defined
in the First Step.

The question that arises when looking for the point with the largest influence
set ST is that many points may have the same amount of influences. The
answer is that for the sequential algorithm, one can pick any of them. It
is important to say that the coarsening strategy does not need to reach to
an unique splitting C and F and all posible splittings are fair enough for
AMG. We only need a splitting which guarantees an accurate representation
of errors and accurate interpolation, with a relatively small set C so we can

1I should say that [5] and [3] have a contradictory assertion in the second step of the coarse-grid
selection algorithm. I followed [5] on this issue, since it maked more sense to me.
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Fig. 9.1. Sequential Coarsening applied to 5-point laplacian 5x5 grid

save memory and speed up the solution phase.

10. Parallel coarsening strategies

Note that the described Ruge-Stueben algorithm is sequential in nature: after
selecting every coarse point, one needs to update the set of influences or cardinalities
for the next step.

There are different strategies to do this in parallel. A naive approach consists
in decomposing the abstract domain in various processors and use the sequential
algorithm in each of them. Once we have one coarse grid for each processor, the
problem arises when the nodes at the sub-domain boundaries does not satisfy Criterion
1, i.e. we have lots of red F −F strong couplings without a common blue C point.
This can be seen in Figure 10.1

10.1. Subdomain blocking

One of the primitive parallel strategies to deal with problems at the boundary
is the Subdomain blocking method. This method proposes in each processor to first
coarsen the boundary and then move towards the interior of each subdomain as shown
in Figure 10.2.

There are two types: Full subdomain blocking and Minimum subdomain blocking.
The first one simply consists in assigning all boundary nodes to be coarse points. This
satisfies Criterion 1, but increases the number of coarse grid points thus increasing
the complexity and computing time of the solution phase of AMG.

The minimum version is less agressive and proposes to coarsen the boundary of
each processor with the same sequential algorithm. This guarantees at least that
each F point at the boundary depends strongly on at least one C-point at the same
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Fig. 10.1. Naive decomposition in 4 processors without any boundary treatment

boundary. There is no communication between processors but on the contrary it
does not provide a solution for F −F couplings across processors shown in Figure 10.1.

10.2. Other approaches

An iterative approach was developed by Luby, Jones and Plassman called the
CLJP coarsening. At each step, an independent set of nodes appropiately chosen are
assigned as C-points and all incident edges of the directed graph are removed. If
there is a point whose incident edges have all been removed and it is not in C, it will
be an F point. The iterations keep going until all nodes have been assigned. This
coarsening requires communication between processors at each step and may also
lead to C-point clusters, thus requiring more memory storage and computing time
during the solution phase.

There is a way to accelerate the CLJP by reducing the number of iterations and
thus of communication between processors. This method is called Falgout coarsening
and consists in choosing the first independent set for it as the coarse grid points C
of the interior of each processor domain after a simple sequential coarsening. During
the CLJP however, more C-points are added to the coarse grid increasing complexity.
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Fig. 10.2. Subdomain Blocking: first coarsen gray area

11. Coarse Grid Classification

We shall describe a new algorithm called Coarse Grid Classification [8], which
tries to avoid some disadvantages observed in the previous approaches. The key idea
will still rely upon a sequential coarsening in each processor, however the boundary
problem will be addresed in a different way.

Recall that due to potential symmetry in the sequential coarsening algorithm
there is usually more than one choice for the largest λ (see First Step). Thus,
depending on our choice for the first coarse grid point we may end up with a
different coarse grid as illustrated in Figure 11.1. This is an advantage for our
domain decomposition approach since we will have a degree of freedom to choose a
specific coarse grid in every processor that better matches our needs across processors.

The Coarse Grid Classification may be implemented in two steps following
??: First and independently on each processor P , we run the sequential algorithm
multiple times with a different starting coarse grid point to generate a set of nP

possible coarse grids, say Vp =∪nP
i=1CP,i. In the second step we need to select one

coarse grid from every processor to build an acceptable coarse grid for the whole
domain.

The second step is done by transferring all P ×nP generated coarse grids to a
single processor. Since we have a relatively small number of possible coarse grid (it
is bounded by the maximal stencil size), the communication should not be an issue.
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Fig. 11.1. Ambiguity: starting coarse grid point in green

Now we may define a weighted graph G=(V,E) in which the vertices represent the
possible coarse grids, namely V =∪P

p=1Vp and the edges consists of all pairs (u,v),
u∈Vp, v∈Vq where p,q are neighboring processors. By neighboring processors we
mean that they there is at least one node in one processor which strongly influences
a node on the other processor.

There are three types of possible couplings between two nodes at the boundary
of two processors: C−C, F −F and C−F . Since we prefer C−F couplings, we
penalize both C−C and F −F with factors -1 and -8 respectively. The problem with
strong F-F couplings is that they might not share a common C-point which strongly
influences both as required by Criterion 1. Additionally, we slightly penalize C-C
couplings since they are acceptable, but increase the grid complexity. Now we may
assign a weight for each edge e=(u,v)∈E by writing:

η(e)=−nCC−8nFF

where nCC , and nFF denote the number of strong C-C and F-F couplings between
the neighboring coarse grids u∈Vp and v∈Vq.

The graph G is transferred to a single processor, which do not require large
communication costs since the number of vertices and edges are small compared to
the number of unknowns N . For each vertex v∈Vp for some p, we define a set of best
matches vertices Bv,q in the neighboring processor q as:

Bv,q ={w :w=argmax
u∈Vq

η(v,u)}

We also define the transpose BT
v,q ={w :v∈Bw,p} and a weight for each node v as

µv =
∑

q |Bv,q|+ |BT
v,q|. The value µv gives an idea of how many coarse grids on other

processors match the coarse grid given by v reasonably well.

We want to pick on each processor the coarse grid with the highest weight
µ. If there are processors with no strong couplings at boundaries, they weights
µ will be zero and we may delete these processors by picking any coarse grid
from their set. Now, we start by choosing the node v with the maximal weight
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Fig. 11.2. Construction of directed graph in a single processor.

µv and separate its processor from the graph G as well. We now would prefer
to choose a node in Bv,q∪BT

v,q for some q. This is enforced by increasing the
weight of each node in Bv,q∪BT

v,q by µv +1 and choosing the node with the max-
imal weight again. This is repeated until we have chosen one node for every processor.

Fig. 11.3. Decision about which coarse grid to choose at each processor

Note that the union of the individual coarse grids now represents a consistent
coarse grid for the whole domain and in general we do not need to apply further
corrections.

12. Numerical Examples

AMG itself has been tested on a broad range of problems as can be seen in [6],
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[3],[7]. The AMG method appears to be robust, even for problems that are not related
to PDEs, for example, applied to Markov Chains [10]. A optimized implementation,
and scalable if possible, is needed in order to perform reliable comparison against
other methods.

I have an implemention for the AMG algorithm, the setup phase (coarsening and
operators) and the two-cycle algorithm, using the Gauss-Seidel method as relaxation
for each step. The implementation is sequential and not optimized, so for now it has
no meaning to compare time against other methods.

I decided then to test the implementation in two cases: one corresponding to a
2D-Laplace equation discretized on an uniform grid; the second one, corresponding to
a matrix obtained from MatrixMarket: PLATZ1919, from Platzman’s oceanographic
models full three ocean model. In both cases, I will compare the performance of the
AMG algorithm against the Gauss-Seidel method.

12.1. 2D Laplace Problem

Consider a rectangular domain and an M×N uniform discretizacion. For
simplicity, assume Dirichlet conditions are given on the boundary points so that we
only care about interior points. Using a 5-stencil discretization, the resulting system
of equations has a matrix which satisfies all properties of an M-matrix. Indeed, AMG
was originally designed to deal this kind or problems. The structure of the matrix is
shown in Figure 12.1.

Fig. 12.1. Typical 5-band structure of 5-point laplacian discretization

The sequential coarsening algorithm generates a coarser version of this matrix
with half of the original size. A closer look into the first 5 components of the fine and
coarse version of the matrix reveals that the overall structures is the same. However,
the entries are quite different as can be seen in Figure 12.2.
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Fig. 12.2. Fine version on the left; Coarse version on the right.

The Figure (12.3) shows the comparison of number of iterations needed for the
AMG to solve the laplacian problem in 5 different cases (increasing matrix sizes).

Fig. 12.3. Performance of AMG cycles agains plain Gauss-Seidel method.

As can be seen, the AMG cycles are half of the Gauss-Seidel iterations needed
to reach the same tolerance error. Recall that one AMG cycle, corresponds to ν1 +
ν2 relaxation steps and additional work such as to compute residual transfers and
interpolation. In this case, ν1 =ν2 =1, i.e, one AMG cycle, uses at least two relaxation
steps.

12.2. Platzman’s Oceanographic Model

The matrix was originally of size 1919×1919, and for faster work I decided to
take a block of 800×800 as the input matrix. This matrix has many properties of
an M-matrix: it is symmetric, positive-definite, sparse and the diagonal entries are
all positive. But there are positive off-diagonal elements and the row sums are not
equal to zero. This makes this matrix interesting to test the coarsening step of the
AMG method, to see how it deals with a non-M-matrix. In particular, this step had
no problem with this matrix, but it had some problems with matrices which had no
M-matrices properties. In Figure (12.4) one can see the spartity and structure of the
matrix.
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Fig. 12.4. Properties of platz: symmetric, sparse, almost M-matrix

In order to make the problem more challenging, a random perturbation matrix
was added to the almost M-matrix: C1 =A1 +0.1∗rand(400). This seems to be
just a little perturbation, but the new matrix is no longer symmetric and is a dense
matrix. Moreover, many off-diagonal entries have now positive or small negative
values, which will affect our sets of weak connections, and therefore the computation
of interpolation weights and operators. The coarsening step still works fine with this
perturbed matrix.

The behavior of AMG for these matrices are similar to what we had before. This
shows again that the AMG algorithm is somehow robust: It was designed only for
M-matrices, but works well for some non-M-matrices.

13. Conclusions and Future Work

Algebraic Multigrid is an active field of research since the mid-nineties, and many
different variations and applications are being developed beyond the classical AMG.
Although the classical AMG works well for a large number of problems, its derivation
rely upon strong assumptions which may restrict its effectiveness. New versions of
AMG thus try to solve specific problems which are not adressed by the classical AMG.

In this prject, no implementation was expected; however, since the Coarse Grid
Classification relies heavily on the sequential algorithm, the sequential coarsening of
Ruge-Stuebn has been implemented with success. This implementation together with
the strategy earlier described for parallelization should provide a straightforward
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implementation of the parallel coarsening.

Hybrid smoothers can be used in order to parallelize the relaxations processes.
It consists in using the Gauss-Seidel method independently on each processor
and sharing information across processor boundaries after each iteration. Other
approaches like polynomial smoothers are also available [8].
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[1] Stüben, K., A review of Algebraic Multigrid, J. Comp. Appl. Math. 128 (1-2) 2001.
[2] Barth, T.,et al.Multiscale and multiresolution methods: theory and applications Lectures Notes

in Comp.Sci.& Eng. Springer, Berlin 2002.
[3] Clearly, A.J.,et al. Robustness and Scalability of Algebraic Multigrid, J. Sci. Comp. SIAM 2000.
[4] Burden, R., Faires, J. D. Numerical Analysis 5th Ed., PWS 1993
[5] Stueben87, An introduction to numerical analysis, Cambridge University Press, 433 pages, 2003.
[6] Briggs, W. L. et al. A Multigrid Tutorial, Second Edition SIAM 2000
[7] Falgout, R.D., An Introduction to Algebraic Multigrid, Computing in Science and Eng. Lawrence

L. Nat. Lab. Report 2006.
[8] Yang, U., Parallel Algebraic Multigrid Methods -High Performance Preconditioners, Numerical

Solution of Partial Differential Equations on Parallel Computers 2006.
[9] Griebel, M. et al. Coarse Grid Classification: A Parallel Coarsening Scheme For Algebraic Multi-

grid Methods, Numerical Linear Algebra with Applications 13 (2-3) 2006.
[10] De Sterck, H.,et al. Algebraic Multigrid for Markov Chains, J. Sci. Comp. 32 pp. 544-562, SIAM

2010

14. Code for general sequential case

function [Ah,I,A2h,D,F,C]=Gexample(AA,Nh)
%General example
%Matrix cut
Ah=AA(1:Nh,1:Nh);

%DEPENDENCE MATRIX
D=sparse(Nh,Nh);
theta=0.25;
for n=1:Nh
%amax=max([-Ah(n,n+1:Nh) -Ah(n,1:n-1)]);
amax=max(setdiff(-Ah(n,:),-Ah(n,n)));

for m=1:Nh
if -Ah(n,m)>=theta*amax

D(m,n)=1;
else if Ah(n,m)==0

D(m,n)=0;
else D(m,n)=-1;
end

end
end
D(n,n)=0;

end

%Detect how many strong influencing points has i
lambda=zeros(Nh,1);
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weak=zeros(Nh,1);

%COLORING SCHEME
for i=1:Nh
lambda(i)=Nh-size(find(D(i,:)-1),2);
weak(i)=Nh-size(find(D(i,:)+1),2);
end

F=[];
C=[];

[q,w]=max(lambda);
while sum(lambda(:))>=1
C=unique([C w]);
STw=setdiff(1:Nh,find(D(w,:)-1));
STw=setdiff(STw,F);
F=[F STw];

for j=1:size(STw,2)
Sw=setdiff(1:Nh,find(D(:,(STw(j)))-1));
lambda(Sw)=lambda(Sw)+1;

end
lambda(union(F,C))=0;
[q,w]=max(lambda);
%if sum(lambda(:))<100
% F
% C
%size(F);
%size(C);
%pause
%end
sum(lambda(:))
end

C=setdiff(1:Nh,F);
F=sort(F);
c=size(C,2)
f=size(F,2)
pause

%SECOND STEP+??? VERIFY H1 violations
i=1;
while(i<f+1)

%Strong Influencing fine-grid points to F(i)
i
S=setdiff(1:Nh,find(D(:,F(i))-1))
FS=intersect(F,S)
sum(FS)
CS=intersect(C,S)
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% pause
if sum(FS)~=0

for m=1:size(FS,2)
ss=sum(Ah(FS(m),CS(:)))
end
if ss==0

pause
i

end
end
%detects the first j in FS that does not depend strongly on CS
if size(CS,2)==0
F=setdiff(F,F(i));
C=[C F(i)];

else if size(FS,2)~=0
%influencing matrix from CS to FS

SEC=full(D(CS,FS))
%if all elements in max(SEC+1)=2, all FS depend on some CS, and it’s ok

[xx,m]=min(max(SEC+1))
%detects the first j in FS that does not depend strongly on CS

if xx~=2
FSprov=setdiff(FS,FS(m))
CSprov=[CS FS(m)]

%influencing matrix from CSprov to FSprov
SECprov=full(D(CSprov,FSprov)

%if all elements in max(SECprov+1)=2, all FSprov depend on some CSprov, and it’s ok)
xxx=min(max(SECprov+1))

%detects the first j in FS that does not depend strongly on CS
if (xxx~=2)&(size(FSprov,2)~=0)
F=setdiff(F,F(i));
C=[C F(i)]
else
F=setdiff(F,F(m));
C=[C F(m)]
end

end
end

c=size(C,2)
f=size(F,2)
i=i+1;

% pause
end

end

%WEIGHTS
Weights=sparse(f,Nh);
for i=1:f
% i

%Weak Influencing fine-grid points to F(i)
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W=setdiff(1:Nh,find(D(:,F(i))+1));
FW=intersect(F,W);
%Strong Influencing fine-grid points to F(i)
S=setdiff(1:Nh,find(D(:,F(i))-1));
FS=intersect(F,S);
%Strong Influencing coarse-grid points to F(i)
CS=intersect(C,S);
ed=Ah(F(i),F(i))+sum(Ah(F(i),FW(:)));
en=zeros(1,Nh);
if sum(FS)~=0

i
pause

SEC=full(D(CS,FS));
for m=1:size(FS,2)

en=en+Ah(F(i),FS(m))*Ah(F(i),:)/sum(Ah(FS(m),CS(:)));
sum(Ah(FS(m),CS(:)))

m
pause
end

end
Weights(i,:)=-(Ah(F(i),:)+en)/ed;
max(Weights(i,:))
i

end
%Weights
%pause

%INTERPOLATION MATRIX
I=zeros(Nh,c);
for n=1:c

I(C(n),n)=1;
end
for m=1:f

for n=1:c
I(F(m),n)=Weights(m,C(n));
end

end

A2h=I’*Ah*I;

function [phijh,error,sfh]=twoAMG(w,v1,vc,Ah,I,A2h,xxxh,xxx2h)
% TWOGRIDMETHOD: Implements the Two-Grid method
% Solves Ahx=sfh
% v1, vc, v2: iteration on the corresponding smoothing steps

% %
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% % %PREPROCESSING - RUN SEPARATELY
% % [Af,I,Ac]=example(31,21); RUNS LAPLACIAN

% % RUNS PLATZ Model
% %[A,rows,cols,entries,rep,field,symm] = mmread(’plat1919.mtx’);
% % [Ah%,I,A2h,Da,Fa,Ca]=Gexample(A,1000)

%fine mesh
Nh=size(Ah,1);
[sfh]=ones(Nh,1); %Activate in the caase of 4 blocks and given sources
%xxxh=Ah\sfh;

%coarse mesh
N2h=size(A2h,1);
[sf2h]=I’*(sfh);
%[A2h]=mountA(N2h);
%Ac is the coarse matrix, see function example() above.
%xxx2h=A2h\sf2h;

phijh=sparse(Nh,1); %Initial guess
phi_o=ones(Nh,1); %Initialize while loop
e=0;

while ((norm(phijh-phi_o,2)/Nh>1e-6)) % Stopping Criteria
phi_o=phijh;

%Pre smoothing - Relaxation on fine mesh
%w=0.8; %or 0.5
%v1=1; %or 1 : Relax iterations v1
[phijh,n,err]=gauss(Ah,sfh,Nh,w,v1,xxxh,phijh);

%Restriction of Residual
rh=sfh-Ah*phijh;

[r2h]=I’*(rh);

%Coarse Grid Correction
%w=0.8; %or 0.5
%vc=4; %or 2 : Relax iterations v1
phi2h=sparse(N2h,1); %Initial guess
[phij2h,n,err]=gauss(A2h,r2h,N2h,w,vc,xxx2h,phi2h);
%phij2h=A2h\r2h; %for EXACT

%Prolongation of error
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[eh] = I*(phij2h);
phijh=phijh+eh;

%Post smoothing - Relaxation on fine mesh
%w=0.8; %or 0.5
%v2=1; %or 1 : Relax iterations v1
%Initial guess: phijh
%[phijh,n,err]=gauss(Ah,sfh,Nh,w,v2,xxxh,phijh);

e=e+1
error(e)=norm(xxxh-phijh,2)/Nh;
end


