

Parallel Linear Algebra in Julia

Britni Crocker and Donglai Wei

18.337 Parallel Computing

12.17.2012

1

Table of Contents

1. Abstract ….. 2

2. Introduction ….. 3

3. Julia Implementation …..7

4. Performance ….. 10

5. Future directions ….. 14

6. References ….. 15

Abstract

In this project, we implement two Parallel Tiled Linear Algebra Algorithms in Julia, Cholesky
and QR decomposition. We follow the algorithm description in [1] and use “dlsym” and “ccall”
functions in Julia to load the OpenBLAS dynamic library [2] and call BLAS kernels. From this
foundation, we are able to implement serial and parallel tiled linear algebra algorithms in Julia.
For parallel implementation, spawned tasks could be dynamically scheduled based on their
dependencies to the returned references of previous tasks.

2

Introduction

2.1 Problem Statement

Numerical linear algebra plays an essential role at the center of many different applications
within engineering and computational science. Due to its optimized implementation, the
software package LAPACK and underlying BLAS routines became the ubiquitous choice for
executing basic linear algebra methods. However, LAPACK is somewhat difficult for non-
expert programmers, spurring the integration of this library with many high-level languages
and computing environments geared specifically for scientific and engineering use. These
software applications generally sacrifice performance for ease-of-use and therefore may not
be appropriate for handling large amounts of data or running large-scale simulations. The
new Julia programming language seeks to combine high performance with high-level usability,
including intuitive support for parallel computing.

Our goal is to build a scalable distributed dense numerical linear algebra library in Julia.
Specifically, we aim at implementing two algorithms: Cholesky and QR decomposition. First, we
seek to implement the serial version of these numerical algorithms (as given in [1]) by exploiting
Julia’s ability to call C and Fortran libraries in order to directly use methods from the BLAS
kernel. Our second task is to use the Directed-Acyclic-Graph (DAG) scheduler in julia to execute
the code in parallel.

2.2 Background

SCALAPACK is the current standard library for performing parallel dense linear algebra
operations built upon LAPACK. The Cholesky and QR decomposition implemented in
SCALAPACK is designed as a high-level algorithm relying on basic block routines from the
Basic Linear Algebra Communication Subprograms (BLACS), based on the Basic Linear
Algebra Subprograms (BLAS). The matrix is conceptually split in blocks of columns, and the
decomposition proceeds by updating the trailing submatrix at each step until all the subsequent
panels are processed. The main drawback to the SCALAPACK approach is that synchronization
points are required between operations, meaning parallelism only occurs within each phase
(panel or update) expressed at the level of BLAS and BLACS.

To alleviate these bottlenecks, tile-based algorithms break the panel decomposition update
of trailing submatrices into finer granularity. The update phase can now be initiated while the
corresponding panel is still being factorized, which allows asynchronous execution models to
hide the latency of access to memory. In this report, we use the high-level algorithm presented
in [1]. In more recent work, implementations on different hardware (e.g. GPU) and variations of
updating order and adaptive block size are explored.

3

Tile-based linear algebra algorithms are not naively parallelizable. While every step in the
algorithm may only require a few tiles, each step often depends on the results of one or more
previous steps. Because of this structure, these tile-based algorithms can be represented as
directed acyclic graphs (DAGs) - directed graphs with the special property that it is impossible
to start at some node n and return to that same node by following the directed edges [5]. Here,
each node is one of the tile-based tasks that needs to be completed in the algorithm, and each
directed edge represents the dependency of that task on the results of previous tasks.

2.3 Linear Algebra Algorithms

We focused on two matrix decompositions: Cholesky and QR. Both of these operations have
tile-based serial algorithms, and the parallel versions are constructed by dynamically allocating
tasks based on a DAG representation of the algorithm.

Cholesky Decomposition
The Cholesky decomposition of a symmetric positive definite matrix A determines the lower‐
triangular matrix L, where LL’ = A.

The original algorithm is a modification of Gaussian elimination. It consists of repeatedly
performing the decomposition of the lower-left submatrix. In the ith iteration, we perform

 to subtract ai,i from the corresponding row and column vector bi and bi
*. In the

end, we have L=L1...Ln.

Image from Wikipedia

Notice that the last step of the basic algorithm above requires matrix multiplication, which is
inefficient. Alternatively, by writing out the element of L explicitly, we can find the recursive
algorithm to directly obtain the value of elements in L.

4

Image from Wikipedia

QR Decomposition
The QR decomposition of a m×n matrix A, with m ≥ n, results in an m×m unitary matrix Q and
the m×n upper triangular matrix R, where QR=A. As the bottom (m−n) rows of an m×n upper
triangular matrix consist entirely of zeroes, it is often useful to partition R, or both R and Q:

Image from Wikipedia

where R1 is an n×n upper triangular matrix, Q1 is m×n, Q2 is m×(m−n), and Q1 and Q2
both have orthogonal columns.
One direct algorithm is a modification of Gram–Schmidt process. The QR decomposition of
A=(a1,a2,...,an) can be seen as making column vectors ai orthogonal to each other through
multiplication of an upper triangular matrix: AR-1=Q. In specific, we define the projection of of

column vector a onto coordinate basis e as: . Then:

5

However, due to stability issues in the approach above, in practice QR decomposition is
realized through Householder reflections. Given a vector x, the Householder reflection is defined

as: where is an m-by-m Householder

matrix and For QR Decomposition, we multiply A with the
Householder matrix Q1 that we obtain when we choose the first matrix column for x. This results
in a matrix Q1A with zeros in the left column (except for the first row):

This can be repeated for A′ (obtained from Q1A by deleting the first row and first column),
resulting in a Householder matrix Q′2. Note that Q′2 is smaller than Q1. Since we actually want it
to operate on Q1A instead of A′ we need to expand it to the upper left, filling in a 1, or in general:

After iterations of this process, ,

is an upper triangular matrix. So, with is a QR decomposition
of .

6

2.4 Parallelization:

As previously described, these tile-based algorithms can be described as
a DAG. One example of such a representation is shown to the right (and
a better one can be found in [3]) for the Cholesky algorithm. In this case,
a matrix is split into 9 tiles (3x3), each represented by a letter A-I. The
colors of the circles represent which of the four linear algebra steps is
being executed: dpotrf, dtrsm, dsyrk, dgemm (see pseudocode in 3.2).
Each blue line represents a dependency on a previous task (directed in
this case from top to bottom).

All tasks in the same row do not depend on each other and therefore can
be executed in parallel. A scheduler could use this DAG representation
to dynamically assign tasks to computing nodes as parent tasks get
completed, speeding up performance. In this small 3x3 example, 10 total
tasks on tiles need to be completed, but there are only 7 rows of tasks in
the DAG, so in an ideal case the parallel Cholesky calculation would take
only 70% of the serial code execution time. However, the additional
overhead of copying or communicating tiles from one node to another
may reduce these gains or even cause the parallel code to run much
slower.

Julia Implementation

3.1 Julia Language

The Julia programming language offers a number of convenient features for programming tile-
based matrix decomposition with dynamic DAG-based scheduling. Julia allows us to directly
call BLAS from a previously compiled shared library using ‘ccall’. It also takes care of a great
portion of the dynamic scheduling - Julia’s spawn macro supports asynchronous execution and
automatic selection of compute nodes. Finally, the high-level language has a gentle learning
curve compared to other parallel computing software solutions.

We implemented the pseudocode from [1] in both serial and parallel versions. In the serial
version, we focus on finding suitable kernels to use from OpenBLAS library, and in the parallel
version we explore the DAG parallelization mechanism that Julia provides.

3.2 Serial version

Since [1] implements their own kernels, some of which are not in the OpenBLAS library, we
need to understand the operation going behind the pseudo code so that we can find equivalent
matrix/vector operations in OpenBLAS.

7

Cholesky Decomposition

Pseudo Code from [1]

dpotrf(A): standard Lapack function to perform the Cholesky decomposition for a symmetric
matrix A=LL’, and the output L overwrites A.

dtrsm(A,B): standard Lapack function to solve the linear equation AX=B, and the output X
overwrites B.

dsyrk(A,B): standard Lapack function to update B := alpha*A*A’ + beta*B, and here we need B:
= -AA’+B

dgemm(A,B,C): standard Lapack function to update C:= alpha*op(A)*op(B) + beta*C, and
here we need C := -A*B+C

In the end, we have the output L overwrites input matrix A.

8

QR Decomposition

Pseudo Code from [1]

dgeqrt(A): standard Lapack function to perform the QR decomposition for matrix A=QR=(I-
VTV’)R, and the output R and V overwrites A using the compact WY technique to accumulate
Householder reflectors. We need extra memory to store T.

dtsqrt(A,B,C): not available in Lapack, so we substitute with Lapack function dtpqrt(A,B,C) and
parameter L=0.

dormqr(A,B,C): standard Lapack function to apply the reflectors Q stored in A and B,
calculated by dgeqrt to the tile C, such that C := QC

dssmqr(A,B,C,D): not available in Lapack, so we substitute with Lapack function
dtpmqrt(A,B,C,D) and parameter L=0.

In the end, we have the output R overwrites input matrix A. It is cumbersome to carry out the
calculation to recover the orthogonal matrix Q by taking outer product of all reflectors generated
along the way. Experimentally, we find it faster to implement a naive paralleled dtrsm to solve
the linear equation A=QR.

3.3 Parallel version

Dynamic, asynchronous scheduling in Julia can be achieved through the macro spawn. Under
this framework, any task called with spawn can be completed at any time, in any order, relative
to other spawned tasks. Unless manually specified, Julia will choose the processor to perform
the task, and every spawn returns a remote reference to the output of the task. The spawn
macro in Julia provides a powerful way to implement tasks that don’t necessarily complete in
the order you’ve written them. In our DAG representation, these spawned tasks represent the

9

graph nodes.

In Julia, scheduling of spawned tasks do not consider the references returned by other spawns
or the relative placement of other spawns. However, scheduling does depend on the relation
of that spawned task to other variables outside the spawns. We can exploit this feature to
generate the directed edges of the DAG by explicitly making variables that refer to remote
references returned by spawned tasks. In this way, spawned tasks can be forced to wait for
returned values from other spawned tasks. A pseudocode example for Cholesky is given
below:

Performance

4.1 Practical notes

To test out our code, we ran all tests on the 80-core julia.mit.edu machine with randomly
generated matrices (made symmetric for Cholesky with B = A*A’). Since the openBLAS library
already supports basic, automatic multithreading, we limited the number of processors in this
case to 4 (though more testing could probably find a more optimal solution). Further, since
Julia’s just-in-time compiler will execute code more quickly on subsequent runs, so we run every
test twice and take the elapsed time of the second trial only. Our code can be found in a forked
Julia repository on GitHub under the username intirb, including the testing protocols.

We ran tests with varying matrix size (1000x1000, 2000x2000, 4000x4000, 8000x8000,
16000x16000), number of tiles (1, 4, 16, 64), and number of processors (1, 2, 4, 8). Full
tables of the results will be sent with this report, but some relevant findings are presented and
discussed below. Ultimately, these tests are good ballpark figures but should probably be
considered incomplete.
4.2 Relationship between block-size and speed

10

Intuitively, the speed of a tile-based matrix algorithm should depend on the total number of tiles.
The nature of this relationship, however, is complex. A higher number of tiles for a given matrix
means that more tile-based operations need to be executed, but each tile-based operation
should run faster since the individual tiles are smaller. For the parallel code, more tiles means
more opportunity to run operations in parallel but also more need for values to be passed
between nodes. For two processors, the results for both cholesky and QR can be found below:

These results illustrate a couple of interesting points. First, while the tiled Cholesky code
consistently runs slower than the original Cholesky function implemented in Julia, the tiled

11

QR code consistently runs faster. Second, in both algorithms, the serial versions seemed to
achieve slight gains in speed for an increasing number of tiles (at least in the range tested),
while the relationship between number of tiles and speed is somewhat more complex in the
parallel algorithms.

In Cholesky, the serial tiled algorithm approaches the performance of the original as the number
of tiles increases, whereas the parallel algorithm seems to achieve its maximum performance at
4 tiles (except in the largest 1600x1600, where 16 tiles was the best). From observation, these
trends were very consistent across all matrix sizes. Though it is possible that the increase in
performance for the Cholesky code is simply due to the Julia compiler “warming up”, the fact
that these trends are consistent across matrix sizes and multiple trials suggests that these
gains are real. The results for the parallel case demonstrate the limits of parallelization: while
increasing the number of tiles improved performance initially, further increases meant a much
larger communication overhead between nodes, which bogs down the calculations.

These gains with increasing number of tiles can also be seen in the serial version of QR, though
the data here is a little noisier. However, for parallel QR, the optimum choice of tiles is more
difficult to determine. The average data seems to suggest that the optimum solution is to forgo
tiling completely, but a closer look at the data reveals that the best choice for tile number varies
considerably with matrix size, so plotting the averages obscures the results. The results from
the parallel QR highlight the difficulty in developing automatic methods for choosing tile size,
and likely any heuristic will ultimately sacrifice performance for ease-of-use.

4.3 Number of processors, matrix size, and speed

Given the above results, it can already be guessed that increasing the number of processors is
detrimental to speed for the tiled algorithms. In both cases, the parallel tiled algorithms perform
slower than their serial counterparts, and adding more processors always slows execution time.
Parallel algorithms that perform slower than their serial counterparts can still sometimes be
useful, as when one needs to perform an operation on a matrix that is too big for one processor
alone.

The issue of speed vs matrix size is important for a number of reasons. If the parallel tile
algorithm becomes impractically slow for large matrices, it loses its one advantage (being able
to perform operations on large matrices). Similarly, though tile-based Cholesky (QR) performs
slower (faster) under the tested conditions, perhaps those trends no longer hold as matrix size
gets larger. The results are shown below:

12

Overall, performance of the tiled algorithms tends to improve relative to existing Julia functions
as matrix size gets larger, at least in the range tested. Notably, the gaps in performance
between parallel and serial versions also decreases considerably as the matrix size gets larger,
suggesting that the parallel algorithms would be appropriate for extremely large matrices when
serial code is no longer sufficient.

13

Future directions

5.1 Other Numerical Algorithms

Currently, we still have difficulty implementing the pseudo code for the LU decomposition
described in [1]. Apart from the notation ambiguity, we currently get stuck at the decomposition
A=P1L1...PiLiU, unable to do the trick for column-based decomposition to reorganize it into
A=P*L*U due to the structure of Li.

More ambitiously, given the building block of Cholesky, QR and LU decomposition, the next
important step would be to implement a tile-paralleled version of SVD decomposition, which is
widely used in scientific computation.

5.2 Code Optimization and Characterization

The results of performance suggests two potential approaches for optimizing the Cholesky
and QR code. While parallelization does seem to improve speeds in Cholesky, both the serial
and parallel tiled algorithms are slow relative to previous implementation. Thus, improvements
in the way the structure of the code or implementation of the algorithm might be able to
increase performance overall. For QR, however, both serial and parallel tiled algorithms
run faster relative to previous implementation, though the parallel version never achieves
clear gains in performance, suggesting that a more optimized approach to parallelization is
needed. Ultimately, testing of both codes was only done under a very limited set of conditions,
so of course expanding the conditions of testing would also be helpful to characterize the
performance of these functions.

There are a few other ways our code could be optimized or made easier to use. Automatic
selection of tiles would help improve usability, though at the expense of performance.
Additionally, a few groups are currently working on implementing other features, such as
dynamic tile sizes and update order, to improve the performance of the algorithms.

5.3 Code Integration

Right now our code can be found in a forked repository on GitHub. It would be great to
eventually integrate all of the BLAS used in our code into the lapack.jl module for calling those
functions from the libopenblas shared library.

References

14

[1] Buttari, A. and Langou, J. and Kurzak, J. and Dongarra, J. A class of parallel tiled linear
algebra algorithms for multicore architectures. Parallel Computing 35(1):38--53,2009
[2] OpenBLAS: http://xianyi.github.com/OpenBLAS/
[3] Bosilca, G. and Bouteiller, A. and Danalis, A. and Faverge, M. and Haidar, A. and Herault,
T. and Kurzak, J. and Langou, J. and Lemarinier, P. and Ltaief, H. Distributed dense numerical
linear algebra algorithms on massively parallel architectures: Dplasma. University of Tennessee
Computer Science, Tech. Rep. Technical Report, UT-CS-10-660, 2010
[4] Julia Language: http://julialang.org/
[5] Sharp, John A., editor. Data flow computing: theory and practice. Ablex Publishing Corp,
1992

15

http://xianyi.github.com/OpenBLAS/
http://xianyi.github.com/OpenBLAS/
http://xianyi.github.com/OpenBLAS/
http://xianyi.github.com/OpenBLAS/
http://xianyi.github.com/OpenBLAS/
http://xianyi.github.com/OpenBLAS/
http://xianyi.github.com/OpenBLAS/
http://xianyi.github.com/OpenBLAS/
http://xianyi.github.com/OpenBLAS/
http://xianyi.github.com/OpenBLAS/
http://julialang.org/
http://julialang.org/
http://julialang.org/
http://julialang.org/
http://julialang.org/
http://julialang.org/

