Automatic Email Filters Generation

18.337 Final Report

Irina Zhelavskaya

December 17, 2012

1 Introduction

Nowadays people get lots of email that can range from the simple "hello, how are
you doing" to corporative mail, mail from friends, colleagues, maybe some
subscriptions, etc. Usually to manage them all people use folders, labels, tags and
filters. Users can manually mark or put their messages to specific folders first couple
of times, but not constantly, because foremost it is very time consuming and routine.
As people are getting tired from this routine work after some time, they try to set up
filters for automatic mail systematizing. Almost all mail clients have the option of
filters creation. For example Gmail has very good system for that. But the problem is
that their interface is comfortable for tech-savvy users, not for non-tech ones. And it
may be not easy even for technical people, because they usually don’t want to waste
time and investigate how to create these filters. In case they do create them, these
filters are usually easy and trivial, and not very complex and multi conditional, and
they sometimes work not very properly and precise.

Therefore an idea to create a program that would automatically generate filters
based on the information that we can get from how a user arrange his present mail
in folders seems to be reasonable. Existing solutions such as mail clients that you
need to install on your computer, or email categorization with Smart Folders (from
Gmail) aiming to mass mailing categorization, have disadvantages and either solve
the problem inefficiently or not entirely.

So the main idea of this project was to create a program that will process all user
mail and use the information about folders and tags to generate filters, and after
that to parallelize it in Julia in order to increase working performance of the
algorithm. Since we will consider the problem when all letters are distributed in
folders independently, the algorithm can be easily parallelized.

2 Formal statement of the problem
2.1 Definitions

To set up a problem first we will enter some definitions that will be used in the
following sections.

We define such terms as a letter (mail), letter’s attribute, a folder and a filter.
* Mail (or a letter) is a vector:
X= (X1,X3, -, Xg),
where x; is a letter attribute (field), i = 1, k, k - is a number of attributes (fields).
* Field is a vector:
X; = (X1, Xi2) o) Xin)s

where x;; is an attribute value (unique identifier), n; - is a number of possible
values of the i-th attribute, j is a number of this attribute.

e Folder

Suppose we have a set of M letters (inbox) X,,, m = 1, M. There also exist S folders
Py, P,, ..., Ps. A folder is a subset of letters such that

vmils: X, € LS P NP = 0,i#).
* Filter is also a vector similar to letter:
F= (f,f, .., f),
where f; is a field of a filter i = 1, k, k is a number of letter’s attributes (fields).

To put it simply, filter is a set of rules that instructs to automatically deliver
incoming messages to the folder of your choice.

2.2 Problem statement

Suppose we have M letters X,,,, m = 1, M. It is known that the letters belong to S
folders Py, P, ..., Pc. We need to find such set of filters {F,},s = 1, S, that

vX,, EP,Vidat e {1,..,n"}: - x;; €1,
and
VX, € B, iVt €{1,..,n"}: - x;; € fg.

That means that letters belonging to one specific folder will be filtered only in that
folder, and other tags will not be assigned to it.

3 Algorithm

3.1 Preliminary research

We started from consideration of machine learning (ML) and neural networks (NN)
algorithms and techniques as suitable tools for solving the problem of filters
creation. This choice was caused by the fact that ML and NN algorithms are
generally used for solving analogous problems, which are connected with rules
creation based on data analysis. However this approach would require sophisticated
data preprocessing. Also we would need to assess a big variety of different ML
methods and algorithms that can be applicable to this problem in order to choose
one that would fit best for solving this problem.

First we start testing and experimenting with different ML algorithms and
techniques (such as Naive Bayes, SVM, Random Trees, Ensemble methods,
AdaBoost, etc.) in WEKA (Machine Learning Software). It appeared that filters
created might be too complicated for such task (real mail is not an extremely
complicated structure, and people usually put some specific and understandable
logic into filters they create).

Since ML algorithms and NN may be unpredictable and to improve their
performance may not be trivial, we decided to make our own algorithm basing on
logic that we can get from statistical nature of mail. From our preliminary
experiments we understood that it is reasonable not to try to create a small set of
very complicated filters, but to create may be a bigger set of simple filters that will
not affect each other. In the next section the algorithm proposed is described.

3.2 Algorithm

We decided to start with a simple case, when one letter can be in one folder only,
which means that a letter can contain only one tag (without multiple tagging). From
this it follows that folders can be considered independently from each other.

The second assumption for filters creation is the nature of the folder. We assume
that letters in one folder have some feature in common, for example, one folder can
contain letters from several specific senders, and letters from these senders lie
mostly in this folder. Or letters can be of a similar context (that reflects in subjects).
We can get the information about those common features if we calculate frequency
histograms for all attributes in all letters. Basing on this information we can obtain
specific patterns and create filters. Attributes are sender, recipient, and subject. At
this point we do not consider such attribute as text of a letter, but it will be added in
the next iterations.

The description of this algorithm is given below.

100% 100%
80% - 80%
60% - 60% I—I—I—I:I:l: &
40% 40% =
20% - 20%

o% | oo LARNNNEE §
1234567 8..n1 12345678 ..n2

(a) (b)

Figure 1. Frequency histograms of two attributes for folder #i: a) sender, b) subject.

Let us consider one folder, for example folder #i. The algorithm consists of the
following steps:

1. Build normalized frequency histograms for each letter’s attribute (for all
letters in the folder).
Example of such histograms for two attributes (sender and subject) is
shown in figure 1 (these histograms are sorted as well). “Normalized”
means that we take into account not only the frequency of specific
attribute value in the folder in hand, but in the whole inbox, that is:

Pr((folder = i) n (sender = j))
Pr(sender = j)

Pr(folder = i|sender = j) =

2. Analyze histograms: choose the “best” histograms (where m/n — max).
1. If m/n > &: choose this attribute value for the filter and create a simple
filter,
2. Else, take the rest attributes values (columns of the histogram) and
build histograms for them for other remaining attributes.
3. Go back to step 2.1.

Results of work depend on parameter ¢ to be selected. It will be shown in section 5.

Listing of a couple of core functions of the algorithm is shown in Appendix A.

4 Data

We worked on two sets of data: real and synthetic. In the following subsections we
will describe the process of getting data from real email account, and the process of
generating synthetic data.

4.1 Real data

Real data was obtained from real email account (we used one of our own Gmail
accounts). Information from account was obtained via Gmail Backup software
(http://www.gmail-backup.com/), which gave us as an output a number of text files
which are consistent with each letter. Each text file contains all needed information
(sender, recipient, subject and etc.) but also a lot of service information which is not
needed at all. That is why one of the tasks at this point was to parse each file
correctly. We used MATLAB to implement the solution for this task so that the
output could be used for MATLAB implementation of the algorithm. It is also very
important to mention that the whole process of parsing files can be parallelized very
well.

As for error evaluation, real filters from Gmail account can be exported,
preprocessed as well, and we can use them to compare with generated filters.

4.2 Synthetic data

Naive Bayes model was used as a model of synthetic mail. The process of generating
data is as follows.

Each attribute (those are either sender, recipient, or subject) has its own model of
distribution of data in folders. First we are generating different distribution models
for all attributes of a letter. And then according to these randomly generated models
letters (mails) for the inbox are being generated. Code for the mail generator is
shown in Appendix B.

5 Experiments and results

5.1 Serial implementation

Serial version of the algorithm was implemented in MATLAB. Algorithm was tested
both on real and synthetic data. Results are presented in this section.

First will be described results for the generated data, and then for the real one. For
the case of generated data several parameters need to be specified:

- Number of letters,

- Number of folders,

— Number of senders,

- Number of recipients,
- Number of subjects.

[t is obvious that results of algorithm’s work depend on mailbox, and therefore on
those parameters. For error estimation cross validation was used. It has become
clear from the experiments conducted that a folder should contain a sufficient

5

number of letters for more truthful error estimation (training set should be of
realistic size to be representative, and so the test set should be). Results also depend
on one more parameter: € (the meaning of this parameter is shown in Figure 1). Red
curve in figure 2 represents a typical picture of error dependence on parameter ¢.
Mailbox was generated with the following parameters: number of letters was equal
to 3000, number of folders to 15, number of senders to 40, number of recipients to
20, number of subjects to 200, and number of cross validations to 50. It can be seen
from the graph that the higher is the value of the parameter ¢, the more is the error.
The reason for that is following. Let’s consider an example when ¢ is set to 95%. By
setting it that way we assumed that we consider almost ideal case: letters are
distributed in folders according to strict rules. For example, filter for folder #k with
a field sender #j will be created only in the case when more than 95% of letters from
sender #j lie in folder #k.

err ; ; f ! :
0.6
04
02

0.1

Figure 2. Error dependence on parameter ¢: red curve stands for synthetically generated data, blue curve for the
real data. Parameters for generated data: number of letters = 3000, number of folders = 15, number of senders =
40, number of recipients = 20, number of subjects = 200, and number of cross validations = 50; for real data:
number of letters = 6357, number of folders = 32, number of senders = 295, number of recipients = 239, number
of subjects = 2042, and number of cross validations = 50.

For the real data, only parameter ¢ is influencing the results. The results are shown
in figure 2 by a blue line. The performance is similar to the synthetically generated
data. Parameters of the mailbox are: number of letters is 6357, number of folders is
32, number of senders is 295, number of recipients is 239, and number of subjects is
2042. Number of cross validations in the experiment was equal to 50.

5.2 Parallel implementation in Julia
Parallel version of the algorithm was partially implemented in Julia. Core functions

taking the most calculation time were implemented in Julia to estimate the speedup
that can be achieved with the help of parallelization. Results are presented in figure

3. The graph is built in logarithmic scale. The horizontal axis stands for the size
order of a matrix A (size(A) = 10”x), for which frequency histograms are calculated.
From this figure it can be seen that speedup reaches up to 6 orders magnitude on
the matrix size equals to 10”6.

6.5

size(A)

Figure 3. Plot of operation time of serial version of the algorithm to parallel one ratio against the size of the
matrix, for which frequency histograms were calculated. Graph was built in logarithmic scale.

6 Moving forward

In this project, an algorithm for mail filters creation based on statistical information
getting from mailbox was proposed. Analysis of serial and parallel version of the
algorithm was done. Future development of this project will continue with the
purpose of creating a plugin for Gmail that will process user’s mail and use the
information about letters’ distribution in folders to generate filters. Future work
includes improving the algorithm (add analysis of letters’ text), investigating more
parallelization options, and making a comparison with other algorithms.

7 References

[1] Combining Pattern Classifiers: Methods and Algorithms (Kuncheva, L.I.; 2004)

[2] L. Rokach, L. Naamani, A. Shmilovici, Active Learning Using Pessimistic
Expectation Estimators, Control and Cybernetics, 38(1): 261-280 (2009)

[3] Lior Rokach: Ensemble-based classifiers. Artif. Intell. Rev. 33(1-2): 1-39 (2010)

[4]

Kuncheva LI, Whitaker C] (2003) Measures of diversity in classifier ensembles
and their relationship with the ensemble accuracy. Machine Learning
51(2):181-207

Margineantu D, Dietterich T (1997) Pruning adaptive boosting. In: Proceedings
of the 14th International Conference on Machine Learning, pp 211-218

Martinez-Munoz G, Suarez A (2004) Aggregation ordering in bagging. In:
International Conference on Artificial Intelligence and Applications (IASTED),
Acta Press, pp 258-263

Martinez-Munoz G, Suarez A (2006) Pruning in ordered bagging ensembles. In:
23rd International Conference in Machine Learning (ICML-2006), ACM Press, pp
609-616

Appendix A. Listing of the algorithm proposed

Listing 1. Main function for filters creation.

function [filters, errors, training set, test set] = main(Inbox, Num tags, valid rate,
eps)
% build histograms (ferquencies...) for the whole Inbox

filters = cell.empty;
errors = zeros(Num_tags, 3);

training set = struct([]);
test_set = struct([]);

for i = 1 : Num_tags,

filter_tag = [];

[Set, Test_Set] = tag_filter(Inbox, i, valid_rate); % Creating test and training
set
if(~isempty(Set))
training set = [training set; Set];

test_set = [test_set; Test_Set];
Universum = Inbox;

hist_i = build_hists(Set, Universum);

[best_hist, cons_hist] = choose_hist(hist_i, eps);

if (~isempty(best_hist))
filters = [filters, create filter(best_hist, i)];
filter_tag = [filter tag create filter(best_hist, i)];
end,

if (~isempty(cons_hist))

for j =1 : size(cons_hist, 1),
filter = create_filter(cons_hist(j), i);
[Set_j, Universum j] = filtering(Set, Universum, filter);

if (~isempty(Universum_j) && ~isempty(Set_3j))
hist_j = build_hists(Set_j, Universum j);
[best_hist_j, cons_hist j] = choose_hist(hist_j, eps);

if (~isempty(best_hist j))
filters = [filters, create_filter(best_hist j, i)];
filter_tag = [filter tag create filter(best_hist j, i) 1;
end,

if (~isempty(cons_hist j))

for k = 1 : size(cons_hist_j, 1),
filter_k = create_ filter(cons_hist_j(k), Jj);
[Set_jk, Universum jk] = filtering(Set_j, Universum j,

filter_k);

if (~isempty(Universum_jk) && ~isempty(Set_jk))
hist_jk = build hists(Set_jk, Universum_ jk);
[best_hist jk, ~] = choose_hist(hist_ jk, eps);
if (~isempty(best_hist jk))
filters = [filters, create_ filter(best_hist jk, j)];
filter_tag = [filter_tag
create filter(best_hist jk, j) 1;
end,
end

end

end

end
end,
end,
errors(i, 1) = error_count(filter_tag, Test_Set);
errors(i, 2) = size(Test_Set, 1);
errors(i, 3) = size(Set, 1);
else
errors(i, 1) = -1;
errors(i, 2) = 0;
errors(i, 3) = 0;
end
end,
filters = filters';

Listing 2. Histograms building.

function [hist] = build hists_inner(Set, Universum, field)
Univ_field = tabulate([Universum. (field)]);

Set_field = tabulate([Set.(field)]);
Set_field(Set_field(:,2) == 0, :, :) = [1;

% build normilized histograms for tag in hand
Field from inbox_ for_ this_tag = Univ_field(Set_field(:,1), :);

a_send = Set_field(:, 2);

b_send = Field from inbox for_this_tag(:, 2);
Field norm freq = a _send ./ b_send;

[~, norm _ind] = sort(Field norm_freq, 'descend');

hist = struct.empty;

for j =1

size(Field norm freq, 1),

hist(j).(field) = Set field(norm_ind(j), 1);
hist(j).frequency = Field norm freq(norm ind(j), 1); % confidence

hist(j).setcount = a_send(norm _ind(j));

oe

support

hist(Jj).univcount = b_send(norm ind(j));

end,

hist = hist';

Listing 3. Choose the best suitable histogram.

function [best_hist, cons_hist] = choose hist(hist, eps)

length_his
hist_names

t

= length(fieldnames(hist));
= fieldnames(hist);

stats = zeros(length hist, 1);

for j = 1 : length hist,
frequencies. (hist names{j}) = [hist.(hist_names{j}).frequency]';
frequencies_j = [hist.(hist names{j}).frequency]';
stats(j) = nnz(frequencies_j > eps) / size(frequencies_j, 1);

end,

[~, ind] = max(stats);

best_hist = hist.(hist_names{ind}) (frequencies. (hist_names{ind}) > eps);

cons_hist

hist. (hist_names{ind}) (frequencies. (hist names{ind}) <= eps);

10

Appendix B. Listing for the mail generator

The generator was implemented in MATLAB.

Listing 1. Mail generator.

function [Inbox, Tags] = inbox generator(Num_folders, Num_letters, Num senders,
Num_recep, Num_ subj)

[Models, PModels] = generate_models distr(Num folders, Num senders, Num recep, Num subj);

[Inbox, Tags] = generate_ inbox(Num_letters, PModels, Models);

Listing 2. Models generator.

function [Models_new, PModels_new] = generate_models_distr(Num folders, Num senders,
Num_recep, Num_ subj)

% Each folder has specific model: distribution laws for senders,
% receipients, subject words.

% Probability density functions for models (distribution)

Models.sender = zeros(Num_senders, Num folders);
Models.recep = zeros(Num_recep, Num folders);
Models.subject = zeros(Num_subj, Num folders);

% Cumulative distribution function

PModels.sender = zeros(Num_senders, Num_folders);
PModels.recep = zeros(Num_recep, Num folders);
PModels.subject = zeros(Num_subj, Num folders);

% After shuffling - the same structs

Models_new.sender = zeros(Num_ senders, Num folders);
Models_new.recep = zeros(Num_recep, Num folders);
Models_new.subject = zeros(Num_subj, Num folders);
PModels_new.sender = zeros(Num_ senders, Num folders);
PModels_new.recep = zeros(Num_recep, Num folders);
PModels_new.subject = zeros(Num_subj, Num folders);
mfield names = fieldnames(Models);

length models = length(fieldnames(Models));

for j = 1 : length models,

dif = zeros(1l, Num_ folders);

b = 100;

for i = 1 : size(Models.(mfield names{j}), 1) - 1,
Models. (mfield names{j})(i, :) = b .* rand(l, Num folders);
dif = dif + Models.(mfield names{j}) (i, :);
b = 100 - dif;
PModels. (mfield names{j})(i, :) = dif;

end,

Models. (mfield names{j})(i + 1, :) = 100 - dif;

PModels. (mfield names{j})(i + 1, :) = 100;

% Then shuffle everything a little bit, so it is more random and all that

for i = 1 : size(Models.(mfield names{j}), 2),
new_ind = randperm(size(Models.(mfield names{j}), 1));

Models_new. (mfield names{j})(:, i) = Models.(mfield names{j})(new_ind', i);

11

1 : size(Models.(mfield names{j}), 1),
dif = dif + Models_new.(mfield names{j})(i, :);
PModels_new. (mfield names{j})(i, :) = dif;
end,
end,

Listing 3. Letters generator.

function [Inbox, Tags] = generate inbox(Num letters, PModels, Models)
mfield names = fieldnames(PModels);

Num_models = length(fieldnames(PModels));
Num_folders = size(PModels.(mfield names{l}), 2);

Letters_count = unidrnd(Num_ letters, 1, Num folders);

Letters_count = floor(Num_letters * Letters_count ./ sum(Letters_count));
ind = randperm(Num_folders, Num letters - sum(Letters_count));
Letters_count(ind) = Letters_count(ind) + 1;
Inbox = struct([]);
inc = 0;
for i = 1 : Num_ folders,
for 1 = 1 + inc : Letters_count(i) + inc
for j = 1 : Num_models,
Inbox(l).tag = ij;
law = PModels. (mfield names{j})(:,1i);
if (strcmp(mfield names{j}, 'sender'))
field = size(law, 1) - sum(100 * rand <= law) + 1;
Inbox(l).(mfield names{j}) = field;
else
field = 0;
while (sum(field) <= 0)
field = zeros(size(law, 1), 1);
k_ar = 1 : size(law, 1);
for k = k_ar,
g = rand;
field(k) = (k == (size(law, 1) - sum(1l00 * g <= law) + 1));
end,
end
Inbox(l).(mfield names{j}) = k _ar(field'>0);
end,
end,
end,
inc = 1;
end,
Inbox = Inbox';

Tags = (1 : Num_ folders)';

12

