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1. Introduction. Seismic imaging has gained a great importance in the last
years due to the high price of oil, a increasing demand from emergent economies,
and the the constant explorations for new oil-fields. In fact, the traditional way of
exploration based in geological patterns and well drilling had became too expensive.
The oil-fields are located far beneath the ground or under some kilometers of water.
Drilling a well is costly and needs a great amount of human and technical expertise. In
order to overpass these difficulties and reduce cost, a seismic prospection is performed
beforehand, in order to increase the probability of hitting an oil-field. This seismic
prospection consists in sending seismic waves, using modified trucks or air cannons,
and then recording the reflected waves using especial arrays of receivers. Once the
data collection is completed, the imaging part starts, inverting the data to form the
slowness model.

It exists an extensive list of different methods for seismic imaging; however, for
the sake of simplicity we focus in the simplest model, which consist in the method of
rays. In fact, if we suppose infinite frequency we wan reduce all the imaging processes
which consist in solving the wave equation, to solving a transport equation. In fact,
under the hypothesis of infinite frequency, a further reduction can be done, using an
asymptotic expansion which result in solving the eikonal equation several times until
the rays and the time arrivals given by the velocity model, match the data given by
the on field receptors.

For the sake of solving the eikonal equation, some methods have been proposed.
The most popular among them is the fast marching method introduced by J. Sethian
and S. Osher [1] [2]. This method is first order and it has the property of visiting each
node only few times, and combined with a heap sort strategy its complexity becomes
O(n log n). However, the amount of data used in real problem is gargantuan, then in
order to perform the imaging process in a reasonable amount of time, parallelisation
is indeed needed.

2. Modeling. The fundamental hypothesis in the seismic imaging is the fact
that the soil and the rock are elastic mediums. Which is considered to be isotropic.
These hypothesis plus some classic mechanics formalism give us that the equation
which explains the propagation of a seismic wave is a wave equation given by (for
further details [5] [6]).

∂2u(x, t)

∂t2
=

1

c2(x)
4u(x, t) (2.1)

Where u is the displacement vector and c is the speed of the wave in the material
given by the Lamé coefficients.

It exists a considerable amount of different methods in the literature to solve this
equation. One of them takes advantage of the high frequency approximation. In fact
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we can propose an Anzat for this equation. Let u has the form:

u(x, t) = f(x) · U(t− T (x))

where U is an impulse and T is the time which the waves takes to arrive to x. In
other words, f control the amplitude of the wave, and U controls the phase. In this
frame we suppose that U varies much faster than f .

Then putting this anzat inside 2.1 we have:

∂2u(x, t)

∂t2
= fU ′′ =

1

c2(x)
4u(x, t)

=
1

c2
4fU

=
1

c2
[U4f − 2U ′′∇T · ∇f − fU ′4T + fU ′′∇T · ∇T ]

Given the fact that U varies much faster than f , it is possible to reduce this
equation to

fU ′′ =
1

c2
fU ′′∇T · ∇T

or (if f and U ′′ are different of zero)

1

c2
‖∇T‖2 = 1

It is worth of remark that the travel time function only depends (in the high
frequency approximation) of the velocity of the material.

3. Serial Implementation.

3.1. Algorithm. Seismic Imaging community defines the slowness as a quantity
which is the inverse of the speed. We have then:

F =
1

c

In order to get used to the Fast Marching Method a serial code was implemented.

The Eikonal Equation where F is positive Lipschitz function is given by:

‖∇T‖ =
1

F
(3.1)

plus boundary conditions. This will be s approximated by a finite differences scheme.

In order to define the scheme which will be used, let consider without any loss of
generality the domain Ω = [0, 1]× [0, 1] and a regular grid of space step ∆x in the x
direction and ∆y in the y direction, such that every point in the grid can be written
by (xi, yj) = (i∆x, j∆y) for i = 1, ..., N and i = 1, ...,M .
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Let the finite difference operators be defined as follow

Dx
i,jT =

T (xi+1, yj)− T (xi, yj)

∆x

D−xi,j T =
T (xi, yj)− T (xi−1, yj)

∆x

Dy
i,jT =

T (xi, yj+1)− T (xi, yj)

∆y

D−yi,j T =
T (xi, yj)− T (xi, yj−1)

∆y

Then we can define the local upwind approximation proposed by Sethian and
Osher using this compact notation as :(

max(D−xi,j T, 0)2 + min(Dx
i,jT, 0)2 + max(D−yi,j T, 0)2 + min(Dy

i,jT, 0)2
) 1

2 =
1

F (xi, yj)

This scheme gives an approximation of the viscosity solution to the Eikonal Equa-
tion, and it can be solved using iterative methods like the Jacobi iteration or Rouy-
Tourin iteration in O(N4) operations (if N = M) however given the fact we are using
a upwind method, it is possible to construct a data dependency between the elements
of the grid.

In fact, the Fast Marching Method takes advantage of this special feature to de-
crease the order order of the operations to O(N3ln(N)).

However, in this particular case a less dissipative scheme was used, given by(
max(D−xi,j T,−D

x
i,jT, 0)2 + max(D−yi,j T,−D

y
i,jT, 0)2

) 1
2 =

1

F (xi, yj)

This scheme implies a cleaner and faster way to implement the local update.

The Fast Marching Method classifies the Nodes of the grid in three different cat-
egories or flags :

• A : accepted Nodes, thanks to the feature of the Upwind scheme, the solution
does not change in these nodes, so once they are accepted their value remain
constant.

• NB : Narrow Band Nodes, these nodes are between the accepted ones, which
values are constant and the ones which haven’t been visited yet, then their
value can change.

• FA : Far Away Nodes, this nodes haven’t been visited by the the method yet,
so the value of the solution is unknown.

The main idea is of the Method is updating the Narrow Band Nodes, freezing one
of them, and tagging it as Accepted. Then advance the Narrow Band by adding new
nodes from Far Away to the Narrow Band, using the upwind finite difference operator
to update their values.

The Fast Marching method can be summarized as follows :
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Fig. 3.1. left The converge rate of T in the L1([0, 1]2) norm. right The time used to perform
the computation v/s N the square root of the number of unknows.

1. Initialize the whole domain as FA Nodes with a huge value on them
2. Set the boundary conditions, and set the Narrow Band
3. Find the node of the Narrow Band with the smallest value and tag it like

Accepted, update its neighbors nodes, using the upwind scheme, and add
them to the NB set.

4. repeat the last all nodes are Accepted.

The step of searching for the NB node with the smallest value, can be done in
difference ways, in the original paper of Sethian and Osher it was done by a min heap
data structure; however, given the fact that the aim here is made this code paral-
lel, which means that the domain will be split in several smaller subdomains, then a
heap data structure doesn’t represent a significative advantage against a double linked
chain. Then for the sake of simplicity the last was implemented with a bubble sort
algorithm to find the minimum.

It is worth remarking that this method, is completely sequential in order to pre-
serve the viscosity of the solution.

3.2. Results. The Algorithm was implemented following [3]. In fact a prelimi-
nary version was implemented in Matlab. The final version was coded in C++ and
compiled with icpc Intel compiler. The benchmarks were run in an AMD 6600 ma-
chine running at 2.0 GigaHertz with 16 gigabytes of RAM.

The serial algorithm was tested agaisnt the Benchmark given by the known non
smooth solution.

T (x, y) = min
(√

x2 + y2,
√

(x− 1)2 + (y − 1)2
)

(3.2)

We present the convergence rate in Fig 3.1 left, and we present time used to
complete the computation in Fig. 3.1 right.

We can observe that the solution converges to the viscocity solution, at the good
rate ( the scheme is only first order and we have a discontinuity of the first derivative).
This shows that the algorithm does what it is supposed to do.
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Fig. 4.1. Interconnection between subdomains using the ghost cells.

We have an asymptotic complexity which grows as C(N) = Nα where the empir-
ical α from the data is given by least square fitting. The result is given by α = 3.3462.

4. Parallel.

4.1. Architecture. A big domain is divided in several smaller subdomains. Is
this case, the algorithm was performed to be used in squares. Each subdomain has a
set of ghost cells which are linked to the boundary cell of its neighbors subdomains as
shown in Fig. 4.1. The subdomain grid is defined by two number, nx and ny which
are the dimentions of the subdomain matrix. Then the number of processors used is
given by np = nx · ny

An iteration of the parallel algorithm is given by a complete update of the local
solution at each subdomain. After each iteration a transfer of information is per-
formed. This information transfer is performed in 8 steps which are depicted in (Fig
4.2 ). This transfer is an synchronous transfer. Then at each boundary a fast sweep
is performed using the new information from the ghost points.

This fast sweep is the key to maintain the viscosity of the solution computed.

A fast sweep consist in solving a 1 diminutional Eikonal Equation along the bound-
ary. In order to do this, the same algorithm was used; however, it was only applied
in the boundary cells (for further details see [3] pag. 91).

Once the Fast sweep was performed, all the nodes which value was decreased after
the sweep are tagged as NB and a ad-hoc flag update is performed.
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Fig. 4.2. The steps to perform the transfer of information from one subdomain to its neighbors.

The flag update consists in, compute the maximum (max) and the minimum
(min) values which where modified. Then the tagging is performed as follows :

• Set to NB all the nodes with value bigger than min and less or equals than
max

• Set to FA all the nodes with value bigger than max
• Set to A all the nodes with value strictly smaller than min

This new tagging and the update of the boundary cells gives us a new set of initial
conditions to restart the Fast Marching method at each subdomain.

This iteration are performed until all the information from one subdomains ar-
rived to all others. In this case this should be nx + ny − 1.

4.2. Scalability. From the empirical complexity we have that for a square array
of size n, that the time spent to compute the solution of a N ×N grid will be

T (N,n) = (2n− 1)

(
N

n

)α
where alpha given by α = 3, 3462, this implies that the speed up is given by the
scalability factor

sc =
nα

2n− 1
≈ O

(
nα−1

2

)
(4.1)

Given the fact that in this case nx = ny = n we have that the number of proces-
sors is np = n2.

The scalability factor, which is defined by the time of the serial implementation
time divided by the parallel implementation time is given by
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Fig. 4.3. Plot of the scability divided by the number of the processors given by Eq 4.1 .

sc =
n
α/2
p

2
√
np − 1

≈ O

(
n

α−1
2

p

2

)
= O

(
n1.1731p

2

)
Using the value of the empirical complexity we have that in this case the case

is slightly super linear; however, there is a one half factor which reduces the effi-
ciency to a half of the ideal one. Nevertheless the fact that the scalabilty is super
linear implies that we can get have a speed up proportional to the number of pro-
cessors, as np grows big enough. In fact for np = 55, sc = 551.1731/2 = 55.02872 ≈ np.

However, this analysis was only based in the asymptotic behavior, the actual
behavior is better as shown in the Fig. 4.3. We can observe that the actual ratio
sc(np)/np has a minimum value set to 0.85. and it becomes bigger than one with
np > 35 which is smaller than what it was predicted by the asymptotic behavior.

4.3. Implementation and Results. The implementation of this algorithm was
done for arrays of 2 × 1, 2 × 2, 4 × 4 and 6 × 6 subdomains. This was coded using
C++ and the Intel OpenMPI libraries.

The algorithm was run the the wave2 cluster of the Wave and Imaging group
at the MIT Mathematics Department, which consist in AMD 6600 machine with 48
cores running at 2.0 Gigahertz and 256 gigabytes of shared RAM. An Example of the
solution given by this algorithm is given in Fig. 4.4.

The results of the time used to complete the computation are given in Fig. 4.5.
It is possible to appreciate than for n small enough the serial algorithm is faster than
the parallel ones,. This is given by the latency of the communications. However,
once the number of unknowns starts to grow, there is a significant speed up given the
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Fig. 4.4. Solution of the Eikonal Equation benchmarking for Eq 3.2 in an 4 × 4 array with
21002 unknowns .

Theoretical scalability.

The results are satisfactory and they fit well with the theoretical computations
of the algorithm, which are presented in Table 4.1

Table 4.1
Speed up of the Parallel Implementation

np Theoretical speed up Eq. 4.1 Empirical speed up
16 14.774 17.910
36 36.51379 35.6662

5. Conclusion. This project was highly instructive, coding everything from
ashes was a real challenge.

The algorithm was coded in a serial frame to get used to C++, and to have a
reference in order to compare the reduction in the computational time. This serial
algorithm gives the correct viscosity solution and is an fundamental part in the par-
allel algorithm.

The parallel algorithm described in this report was implemented in C++ using
OpenMPI libraries. It does converge as expected to the viscosity solution and it
presents the speed up which was predicted by straight forward theoretical computa-
tion.
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Fig. 4.5. The steps to perform the transfer of information from one subdomain to its neighbors.

The Eikonal Equation can be solved in parallel reducing the time of computation,
and it presents a super linear behavior (in the best array configuration) which implies
that increasing the number of processors the ratio sc(np)/np should increase, giving
better performance.

This case, was the good example of how to transform a pure serial algorithm, in to
a parallel one. Even though the parallel one will recompute the same unknown several
times, the fact of working with smaller subdomains and the fact that the complexity
is super linear, allowing us for trading off, which can be used to obtain an speed up
bigger than the number of processors.
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6. Appendix.

1. list.h This file is the implementation of the double linked list. With ad-hoc
append and removing functions
class Node

{

public:

int indi, indj; //positions

int** flag; // the flag for this node

Node* child;

Node* father;

double** T; // a pointer to the values

double** F; // a pointer to the matrix of F_{i,j}

Node(){

indi = 0;

indj = 0;

child = NULL;

father = NULL;

T = NULL;

F = NULL;

}

Node(int i, int j, Node* next, Node* before, double**

t, double** f, int** drapeau ){

indi = i;

indj = j;

father = next;

child = before;

T = t;

F = f;

flag = drapeau;

}

};

// method for insertion of nodes

// we suppose that the list is ordered, then we should see where the new node has to be.

void insert(Node* &biggest, Node* &smallest, Node* add)

{

if(biggest != NULL) { //the tree has at least one element

// cout << "biggest is not null" << endl;

int i = (biggest)->indi;

int j = (biggest)->indj;

if((*biggest).T[i][j] < add->T[add->indi][add->indj]){

add->child = biggest; // cout << "add to last bigger" << endl;

add->father = biggest->father; // cout << " connecting with the other part of the chain: << endl;

biggest->father = add; // cout << "the father of the child of the biggest" << endl;

biggest = add; // cout << "updating the biggest" << endl;

}

else {
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insert(biggest->child, smallest, add);

}

}

else{ // tree is empty

// cout << "the tree is empty" << endl;

biggest = add; // cout << "including the head" << endl;

if(smallest == NULL){

add->father = NULL;

}

else{

add->father = smallest;

}

// cout << "including the father" << endl;

add->child = NULL; // cout << "including the child" << endl;

smallest = add; // cout << "including the tail" << endl;

}

}

void fast_reorder(Node* &biggest, Node* &smallest){ // bubble sort

if(biggest!= NULL){

Node* aux;

aux = biggest->child;

if (aux!= NULL){

int i,j, ia, ja;

i = biggest->indi;

j = biggest->indj;

ia = aux->indi;

ja = aux->indj;

if (biggest->T[i][j] < aux->T[ia][ja]){ //wrong order

if(aux->child != NULL){ // aux is not the smallest

(aux->child)->father = biggest;

}else{ // aux is the smallest

smallest = biggest;

}

if(biggest->father != NULL){ // bisggest is no the biggest

(biggest->father)->child = aux;

}

aux->father = biggest->father;

biggest->child = aux->child;

biggest->father= aux;

aux->child = biggest;

}

fast_reorder(aux, smallest);

}

}

}

// removing the node from the list
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void remove(Node* &biggest, Node* &smallest, Node* add){

if(biggest == add && smallest == add){ //cout << "removing head and tail";

biggest = NULL;

smallest = NULL;

}

else{

if (biggest == add){ // cout << "we have to remove the head" << endl;

add->child->father = NULL;

biggest = add->child;

}

else{

if (smallest == add){ // cout<< "we have to remove the tail" << endl;

smallest->father->child = NULL;

smallest = add->father;

}

else{

add->father->child = add->child;

add->child->father = add->father;

}

}

}

}

void print_values(Node* biggest)

{

Node* aux = biggest;

int i = 0;

while (aux!=NULL){

if (i != 0){

cout << "-->" ;

}

cout << aux->T[aux->indi][aux->indj] ;

aux = aux->child;

i++;

}

cout << "\nthe number of nodes is " << i << endl;

}

2. mesh.h. This File defines the slowness model and give some printing func-
tions. The outputs will be read in Matlab for plotting and for convergence
estimates.
double** speedgeneration (double a,double b,double c,double d,int n,int m){

double** F;

F = new double*[n];

for(int j = 0; j<n ; j++ )

F[j] = new double[m];

for(int i = 0; i<n; i++){

for(int j = 0; j < m; j++){

F[i][j] = speed(a + (b-a)/(n-1)*i, c + (d-c)/(m-1)*j);
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}

}

return F;

}

void print_file(int n, int m, double** T){

ofstream myfile;

myfile.open("solution.txt");

for (int j = m-1; j>=0 ; j--){

for(int i = 0 ; i<n ; i++){

myfile << "\t" << T[i][j];

}

myfile <<endl;

}

myfile.close();

}

3. quadratic.h. This class implements all the functions to update the nodes and
the Fast sweep strategy
double quadratic(double a, double b, double c){

// a and b are the values of the neighbors and c is just \delta x / F square

double delta;

double d;

delta = (2*c - (a-b)*(a-b) );

if (delta >= 0)

d = (a + b + sqrt(delta))/2;

else

d = 1000000000; //just a huge number

return d;

}

void solve(Node* kk,double dx){

Node k = *kk;

int i = k.indi;

int j = k.indj;

if(k.flag[i][j] != 0){

double Tij = k.T[i][j];

double Tiij= k.T[i+1][j];

double Tijj= k.T[i][j+1];

double Tj = k.T[i-1][j];

double Ti = k.T[i][j-1];

double F = k.F[i][j];

double s = dx*dx/(F*F);

double d1, d2, d3, d4 ,d5;

d1 = 100000000;

d2 = d1;

d3 = d2;

d4 = d3;

d5 = d4;
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d1 = dx/F + min(min(Ti,Tijj), min(Tiij,Tj));

if( Ti < Tij && Tj < Tij){

d2 = quadratic(Ti,Tj,s);

}

if( Tj < Tij && Tijj < Tij){

d3 = quadratic(Tj,Tijj,s);

}

if( Tijj < Tij && Tiij < Tij){

d4 = quadratic(Tijj,Tiij,s);

}

if( Tiij < Tij && Ti < Tij){

d5 = quadratic(Tiij,Ti,s);

}

k.T[i][j] = min( min(d1,min(d2,d3)) ,min(d4,d5));

}

}

void Update(Node* &biggest,Node* &smallest,Node** &Grid,int n,int m,int** &Fl, double dx) {

int curri = smallest->indi;

int currj = smallest->indj;

// updating the values of the neighbors

if (curri < n-2 )

solve(&Grid[curri+1][currj], dx);

if (curri > 1 )

solve(&Grid[curri-1][currj], dx);

if (currj > 1)

solve(&Grid[curri][currj-1], dx);

if(currj < m-2 )

solve(&Grid[curri][currj+1], dx);

//setting the flag of the smallest one to zero

Fl[smallest->indi][smallest->indj] = 0;

remove(biggest, smallest, &Grid[curri][currj]);

for(int i = curri - 1; i <= curri+1; i++){

for(int j = currj-1; j <= currj+1; j++){

if(i !=curri || j != currj){

if (Fl[i][j] == 1) {

remove(biggest,smallest, &Grid[i][j]);

}

}

}

}

for(int i = curri - 1; i <= curri+1; i++){

for(int j = currj-1; j <= currj+1; j++){

if(i != curri || j != currj){
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if(i>0 && i<n-1 && j>0 && j<m-1){

if(Fl[i+1][j]!=0 && Fl[i-1][j]!=0 && Fl[i][j+1]!=0 && Fl[i][j-1]!=0 ){

Fl[i][j] = 2;

}

else{

if (Fl[i][j] == 1) {

insert(biggest, smallest, &Grid[i][j]);

}

if (Fl[i][j] != 0 && Fl[i][j] != 1){

Fl[i][j] = 1;

insert(biggest, smallest, &Grid[i][j]);

}

}

}

}

}

}

}

void Fastsweep(double** data, double* speed, int n, double* &sol,double dx){

double first[n];

double second[n];

//copy the initial data

for (int i = 0; i < n ; i++){

sol[i] = data[1][i];

}

// the first sweep

int i = 1;

double Tij,Tiij, Tijj,Tj,Ti,F,s;

double d1, d2, d3, d4, d5;

for(int j = 1; j < n-1; j++){

Tij = data[i][j];

Tiij= data[i+1][j];

Tijj= data[i][j+1];

Tj = data[i-1][j];

Ti = data[i][j-1];

F = speed[i];

s = dx*dx/(F*F);

d1 = 100000000;

d2 = d1;

d3 = d2;

d4 = d3;

d5 = d4;

d1 = dx/F + min(min(Ti,Tijj), min(Tiij,Tj));
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if( Ti < Tij && Tj < Tij){

d2 = quadratic(Ti,Tj,s);

}

if( Tj < Tij && Tijj < Tij){

d3 = quadratic(Tj,Tijj,s);

}

if( Tijj < Tij && Tiij < Tij){

d4 = quadratic(Tijj,Tiij,s);

}

if( Tiij < Tij && Ti < Tij){

d5 = quadratic(Tiij,Ti,s);

}

data[i][j] = min(min(min(d1,min(d2,d3)),min(d4,d5)), sol[j]);

first[j] = data[i][j];

}

for(int j = n-2; j >=0; j--){

Tij = data[i][j];

Tiij= data[i+1][j];

Tijj= data[i][j+1];

Tj = data[i-1][j];

Ti = data[i][j-1];

F = speed[i];

s = dx*dx/(F*F);

d1 = 100000000;

d2 = d1;

d3 = d2;

d4 = d3;

d5 = d4;

d1 = dx/F + min(min(Ti,Tijj), min(Tiij,Tj));

if( Ti < Tij && Tj < Tij){

d2 = quadratic(Ti,Tj,s);

}

if( Tj < Tij && Tijj < Tij){

d3 = quadratic(Tj,Tijj,s);

}

if( Tijj < Tij && Tiij < Tij){

d4 = quadratic(Tijj,Tiij,s);

}

if( Tiij < Tij && Ti < Tij){

d5 = quadratic(Tiij,Ti,s);

}

data[i][j] = min(min(min(d1,min(d2,d3)),min(d4,d5)), sol[j]);

second[j] = data[i][j];
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}

for(int ii = 1; ii<n-1 ; ii++){

sol[ii] = min(min(sol[ii],first[ii]), second[ii]);

}

}

// function to update flags after a double fast sweep in the boundary

void Update_flags(double** &T,int n,int m,int** &Fl){

double minT = 100000000;

double maxT = -100000000;

for (int i = 1; i < n-1 ; i++ ){

if(Fl[i][1] == 1){

minT = min(minT,T[i][1]);

maxT = max(maxT,T[i][1]);

}

if(Fl[i][m-2] == 1){

minT = min(minT,T[i][m-2]);

maxT = max(maxT,T[i][m-2]);

}

}

for (int j = 1; j < m-1; j++ ){

if(Fl[1][j] == 1){

minT = min(minT,T[1][j]);

maxT = max(maxT,T[1][j]);

}

if(Fl[n-2][j] == 1){

minT = min(minT,T[n-2][j]);

maxT = max(maxT,T[n-2][j]);

}

}

if(minT != 100000000 && maxT != -100000000){

for(int i = 1; i<n-1 ; ++i){

for(int j = 1; j < m-1; j++){

if(Fl[i][j] !=1){

if (T[i][j] < minT){

Fl[i][j] = 0 ;

}

else{

if(T[i][j] >= maxT){

Fl[i][j] = 2;

}

else{

Fl[i][j] = 1;

}

}

}

}

}

}

18



}

4. main.cpp. This is the example of the parallel implementation, in this case for
a 4× 4 grid.
// program to compute the distance from two oposites points

// in parallel with sixteen cores, in a sixteen 18x18 grids optimized version

#include <iostream>

#include <sstream>

#include <fstream>

#include <cstdlib>

#include <iomanip>

#include <ctime>

using namespace std;

#include "mpi.h"

#include "math.h"

#include "fonctions.h"

#include "list.h"

#include "mesh.h"

#include "quadratic.h"

int main ( int argc, char *argv[] );

int main ( int argc, char *argv[] ) {

//--------------------------------MPI ------------------------------

// initialize the MPI variables

int id;

int np;

double wtime;

int tag;

//typical stuff for MPI

MPI_Status Stat;

// data type for sending vectors

MPI_Datatype columntype;

MPI_Datatype rowtype;

// Initialize MPI.

MPI::Init ( argc, argv );

// Get the number of processes.

np = MPI::COMM_WORLD.Get_size ( );

// Get the individual process ID.

id = MPI::COMM_WORLD.Get_rank ( );

// Process 0 prints an introductory message.

double t0;
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if ( id == 0 )

{

cout << "Running Eikonal Equation Solver based in Fast Marching Method"<< endl;

t0 = MPI_Wtime();

}

// initialization of the local variables

int n = 18; //size of the grid

int m = 18;

double a = 0; // box [a,b]x[c,d]

double b = 1;

double c = 0;

double d = 1;

double dx = (b-a)/(n-3);

// number of subdomains

int ax = 4; // in the x coordinate

int ay = 4; // in the y coordinate

//cout << "defining the input output strutures" << endl;

MPI_Type_contiguous(m, MPI_DOUBLE, &columntype);

MPI_Type_commit(&columntype);

MPI_Type_contiguous(n, MPI_DOUBLE, &rowtype);

MPI_Type_commit(&rowtype);

double** T; // the solution

T = new double*[n];

int** Fl; // Flags

Fl = new int*[n];

Node** Grid; //pointer from the grid to the list

Grid = new Node*[n];

//initialization of the subarrays

for(int i = 0; i<n; i++){

T[i] = new double[m];

Fl[i] = new int[m];

Grid[i] = new Node[m];

}

double** G; //defining the speed map

G = speedgeneration(a,b,c,d,n,m); //building the speed map, have

// initialiate the node reference table and the distance map

for(int i = 0; i<n ; i++){

for (int j = 0; j<m ; j++){

Grid[i][j] = Node(i,j,NULL,NULL,T,G,Fl);

T[i][j] = 100000000;

}

20



}

Node* biggest = NULL;

Node* smallest = NULL;

// cout << "we need to set all the boundarie terms as far awai i.e. set Fl = 2 " << endl;

for(int i = 0; i<n; i++){

for(int j = 0; j<m; j++){

Fl[i][j] = 2;

}

}

// setting the initial conditions in the central core must be done for each core

//and starting point in the first quadrant

if(id == 0){

T[1][1] = 0;

Fl[1][1] = 1;

}

//another starting point in the last quadrant

if(id == 15){

T[n-2][m-2] = 0;

Fl[n-2][m-2] = 1;

}

// cout << "adding all the nodes with narrow flag to biggest" << endl;

for(int i = 0 ; i<n; i++){

for(int j = 0; j<m; j++){

if(Fl[i][j]==1){

// cout << i << "," << j << endl;

insert(biggest, smallest, &Grid[i][j]);

}

}

}

//-----------solving the local problem------------------------

//cout << "performing the iteration" << endl;

while(biggest!=NULL){

Update( biggest, smallest, Grid, n,m, Fl,dx) ;

}

//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

// scheme of the array

// ----------------------

// | id + ax | id +ax+1 |...

// --------------------

// | id | id+1 |...
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//------------------------

for (int kk = 0; kk<4; kk++){

double North[n];

double South[n];

double East[m];

double West[m];

for (int i = 0 ; i<n; i++){

North[i] = 100000000;

South[i] = 100000000;

}

for (int j = 0 ; j<m; j++){

East[j] = 100000000;

West[j] = 100000000;

}

//cout << "sending information" << endl;

if(id % 2 == 0 && ax != 1 ) {

// we are going to transfer information to the right

// cout << "process " << id << " is sending information to " << id+1<< endl;

double send_buff[m];

for(int j = 0 ; j<m ; j++){

send_buff[j]= T[n-2][j];

if((id )%ax == 0){

West[j] = 100000000; // we wont modify the West values

}

}

MPI_Send (&send_buff, 1 ,columntype, id+1 , 2, MPI_COMM_WORLD );

//cout<< "information sent" << endl;

//cout << "receiving ghost cells from the right then East" << endl;

MPI_Recv (East,m, MPI_DOUBLE, id+1 ,0 , MPI_COMM_WORLD ,&Stat);

}

if((id-1) % 2 == 0){

//cout << "receiving ghost cells" << endl;

MPI_Recv (West,m, MPI_DOUBLE, id-1 ,2 , MPI_COMM_WORLD ,&Stat);

// cout << "sending the ghost sell back to the left process" << endl;

double send_buff[m];

for(int j = 0 ; j<m ; j++){

send_buff[j]= T[1][j];

if((id +1)%ax == 0){ //i.e. we are at the right boundary of the subdomains

East[j] = 100000000; // to change afterwards

}

}
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MPI_Send (&send_buff, 1 ,columntype, id-1 , 0, MPI_COMM_WORLD );

//cout<< "information sent" << endl;

}

//==================================================================================

if((id-1) % 2 == 0 && (id+1) % ax != 0 ) {

// we are going to transfer information to the right

//cout << "process " << id << " is sending information to " << id+1<< endl;

double send_buff[m];

for(int j = 0 ; j<m ; j++){

send_buff[j]= T[n-2][j];

}

MPI_Send (&send_buff, 1 ,columntype, id+1 , 2, MPI_COMM_WORLD );

//cout<< "information sent" << endl;

//cout << "receiving ghost cells from the right then East" << endl;

MPI_Recv (East,m, MPI_DOUBLE, id+1 ,0 , MPI_COMM_WORLD ,&Stat);

}

if( id % 2 == 0 && id%ax != 0 ){

//cout << "receiving ghost cells" << endl;

MPI_Recv (West,m, MPI_DOUBLE, id-1 ,2 , MPI_COMM_WORLD ,&Stat);

// cout << "sending the ghost sell back to the left process" << endl;

double send_buff[m];

for(int j = 0 ; j<m ; j++){

send_buff[j]= T[1][j];

if((id +1)%ax == 0){ //i.e. we are at the right boundary of the subdomains

}

}

MPI_Send (&send_buff, 1 ,columntype, id-1 , 0, MPI_COMM_WORLD );

//cout<< "information sent" << endl;

}

//*********************** information transfer in the vertical direction

if(id < ax || (id >= 2*ax && id < 3*ax ) ) {

// we are going to transfer information to the upside

// cout << "process " << id << " is sending information to " << id+ay<< endl;

double send_buff[n];

for(int i = 0 ;i<n ; i++){

send_buff[i]= T[i][m-2];

if(id < ax){

South[i] = 100000000;

}

}

MPI_Send (&send_buff, 1 ,rowtype, id+ax , 3, MPI_COMM_WORLD );

//cout<< "information sent" << endl;
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//cout << "receiving ghost cells from the the up the North" << endl;

MPI_Recv (North,n, MPI_DOUBLE, id+ax ,4, MPI_COMM_WORLD ,&Stat);

}

if( (id >= ax && id < 2*ax) || (id >= 3*ax) ) {

// cout << "receving the ghost points" <<<

//cout << "receiving ghost cells" << endl;

MPI_Recv (South,n, MPI_DOUBLE, id-ax ,3 , MPI_COMM_WORLD ,&Stat);

// cout << "sending the ghost sell back to the left process" << endl;

double send_buff[n];

for(int i = 0 ; i<n ; i++){

send_buff[i]= T[i][1];

if( id+ax >= np){ //i.e. we are at the upper boundary of the subdomains

North[i] = 100000000;

}

}

MPI_Send (&send_buff, 1 ,rowtype, id-ax , 4, MPI_COMM_WORLD );

//cout<< "information sent" << endl;

}

// ==================================================================

if(id >= ax && id < 2*ax ) {

// we are going to transfer information to the upside

//cout << "process " << id << " is sending information to " << id+ay<< endl;

double send_buff[n];

for(int i = 0 ;i<n ; i++){

send_buff[i]= T[i][m-2];

if(id < ax){

South[i] = 100000000;

}

}

MPI_Send (&send_buff, 1 ,rowtype, id+ax , 3, MPI_COMM_WORLD );

//cout<< "information sent" << endl;

//cout << "receiving ghost cells from the he up the North" << endl;

MPI_Recv (North,n, MPI_DOUBLE, id+ax ,4, MPI_COMM_WORLD ,&Stat);

}

if( id >= 2*ax && id < 3*ax ) {

//cout << "receiving ghost cells" << endl;

MPI_Recv (South,n, MPI_DOUBLE, id-ax ,3 , MPI_COMM_WORLD ,&Stat);

// cout << "sending the ghost sell back to the left process" << endl;

double send_buff[n];

for(int i = 0 ; i<n ; i++){
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send_buff[i]= T[i][1];

if( id+ax >= np){ //i.e. we are at the upper boundary of the subdomains

North[i] = 100000000;

}

}

MPI_Send (&send_buff, 1 ,rowtype, id-ax , 4, MPI_COMM_WORLD );

//cout<< "information sent" << endl;

}

//++++++++++++++++++++++++information sent, now update+++++++++++++++++++++++++++++++

//-----------------------------------------------Horizontal Direction------------------------------

double** dataH; dataH = new double*[3];

dataH[0] = new double[m]; dataH[1] = new double[m]; dataH[2] = new double[m];

double* answerH; answerH = new double[m];

double columnspeed[m];

for(int j = 0; j<m; j++){

dataH[0][j] = East[j];

dataH[1][j] = T[n-2][j];

dataH[2][j] = T[n-3][j];

columnspeed[j] = G[n-2][j];

}

// cout << "performing fast sweep East in core " << id << endl;

Fastsweep(dataH, columnspeed, m, answerH, dx);

for(int j = 0; j < m ; j++){

if ( T[n-2][j] > answerH[j] ){

Fl[n-2][j] = 1;

}

T[n-2][j] = answerH[j];

T[n-1][j] = East[j];

}

for(int j = 0; j<m; j++){

dataH[0][j] = West[j];

dataH[1][j] = T[1][j];

dataH[2][j] = T[2][j];

columnspeed[j] = G[1][j];

}

// cout << "performing fast sweep West in core " << id << endl;

Fastsweep(dataH, columnspeed, m, answerH, dx);

for(int j = 0; j<m ; j++){

if ( T[1][j] > answerH[j] ){

Fl[1][j] = 1;

}

T[1][j] = answerH[j];

T[0][j] = West[j];
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}

//-----------------------------------------------------Vertical Direction------------------------------

double** dataV; dataV = new double*[3];

dataV[0] = new double[n]; dataV[1] = new double[n]; dataV[2] = new double[n];

double* answerV; answerV = new double[n];

double rowspeed[n];

for(int i = 0; i<n; i++){

dataV[2][i] = North[i];

dataV[1][i] = T[i][m-2];

dataV[0][i] = T[i][m-3];

rowspeed[i] = G[i][m-2];

}

//cout << "performing fast sweep North in core " << id << endl;

Fastsweep(dataV, rowspeed, n, answerV, dx);

for(int i = 0; i<n ; i++){

if ( T[i][m-2] > answerV[i] ){

Fl[i][m-2] = 1;

}

T[i][m-2] = answerV[i];

T[i][m-1] = North[i];

}

for(int i = 0; i<n; i++){

dataV[0][i] = South[i];

dataV[1][i] = T[i][1];

dataV[2][i] = T[i][2];

rowspeed[i] = G[i][1];

}

//cout << "performing fast sweep South in core " << id << endl;

Fastsweep(dataV, rowspeed, n, answerV, dx);

for(int i = 0; i<n ; i++){

if ( T[i][1] > answerV[i] ){

Fl[i][1] = 1;

}

T[i][1] = answerV[i];

T[i][0] = South[i];

}

// ______________Boundary updated, updating flags____________

Update_flags(T, n,m,Fl);

for(int i = 0 ; i<n; i++){

for(int j = 0; j<m; j++){

if(Fl[i][j]==1){
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insert(biggest, smallest, &Grid[i][j]);

}

}

}

//+++++++++++++++++++ Solving Locally +++++++++++++++++

// cout << "performing the fast sweeping locally in " << id << endl;

while(biggest!=NULL){

Update( biggest, smallest, Grid, n,m, Fl,dx);

}

}

//-----------------giving back all the information to the first node------

if (id > 0 )

{

double send_buff[m];

tag = 1;

for(int i = 0; i<n ; i++){

// cout << "sending the " << i<< "th column of the array" << endl;

for(int j =0; j<m; j++){

send_buff[j]= T[i][j];

}

MPI_Send (&send_buff, 1,columntype, 0 , 1, MPI_COMM_WORLD );

}

}

if(id == 0){

double t1;

t1 = MPI_Wtime();

tag = 1;

double*** Global;

Global = new double**[np];

cout <<"number of processors are " << np << endl;

Global[0] = T;

for(int i = 1; i < np ; i++ ){

Global[i] = new double*[n];

for (int j = 0; j<n; j++ ) {

Global[i][j] = new double[m];

double b[m];

MPI_Recv (b,m, MPI_DOUBLE, i ,1 , MPI_COMM_WORLD ,&Stat) ;

for(int kk = 0; kk < m; kk++){

Global[i][j][kk] = b[kk];

}

}

}

cout << "total time of computation " << t1-t0 << "seconds" << endl;

double** TT = blend(np, n, m, 4, 4, Global);
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print_file(4*n-6,4*m-6,TT);

}

MPI_Type_free(&columntype);

MPI_Type_free(&rowtype);

MPI::Finalize ( );

return 0;

}
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