# Parallel Implementation of a Fast Marching solver for the Eikonal Equation 

Leonardo Andrés Zepeda Núñez

## Summary

- Seismic Imaging
- Eikonal Equation
- Viscosity Solution
- Numerical Methods
- Serial Implementation
- Parallel Implementation
- Conclusion
- Questions


## Seismic Imaging

- Velocity Model $\quad F(x, y)$
- Experimental Data

$$
s(x, y=0)
$$

- First Arrival

$$
T(x, y=0)
$$



## Seismic Imaging

- Geometric Optics
- Ray Approximation
- Travel time function $T(x, y)$
- No Reflection
- Fitting on the surface

$$
\min _{F}\left\|T_{\exp }(x)-T_{F}(x, y=0)\right\|_{X}
$$

## Eikonal Equation

- Equation

$$
\|\nabla T(x, y)\| F(x, y)=1
$$

- Distance function on a Manifold $g(\cdot, \cdot)=\frac{(\cdot, \cdot)}{v^{2}(x, y)}$
- Computation of the geodesic distance
- Solution is not unique

$$
\begin{gathered}
\left\{\begin{array}{l}
\left|u^{\prime}(x)\right|=1 \text { in }(-1,1) \\
u(x)=0, \quad x= \pm 1 .
\end{array}\right. \\
u(x)=1-|x|
\end{gathered}
$$






## Viscosity Solution

- Physical Solution
- Presence of Viscosity in real World

$$
\left\|\nabla T_{\epsilon}(x, y)\right\|=\frac{1}{F(x, y)}+\epsilon \Delta T_{\epsilon}(x, y)
$$

- Regularity and Limit

$$
\lim _{\epsilon \rightarrow 0} T_{\epsilon}=T
$$

$$
T_{\epsilon} \stackrel{?}{\rightarrow} T
$$

## Viscosity Solution

- Entropy
- Why do we care?
- Unique Solution
- Different Schemes won't give the good answer


## Numerical Method

- Discretization
- Grid
- Derivatives
- Upwind Methods

$$
T_{i, j}=\left(x_{i}, y_{j}\right)=(i \Delta x, j \Delta y)
$$

$$
\frac{\partial T}{\partial x}_{i, j} \approx L\left(T_{i, j}\right)
$$

$$
\begin{aligned}
D_{i, j}^{x} T & =\frac{T\left(x_{i+1}, y_{j}\right)-T\left(x_{i}, y_{j}\right)}{\Delta x} \\
D_{i, j}^{-x} T & =\frac{T\left(x_{i}, y_{j}\right)-T\left(x_{i-1}, y_{j}\right)}{\Delta x} \\
D_{i, j}^{y} T & =\frac{T\left(x_{i}, y_{j+1}\right)-T\left(x_{i}, y_{j}\right)}{\Delta y} \\
D_{i, j}^{-y} T & =\frac{T\left(x_{i}, y_{j}\right)-T\left(x_{i}, y_{j-1}\right)}{\Delta y}
\end{aligned}
$$

## Numerical Methods

- Upwind Schemes

$$
\begin{aligned}
& \left(\max \left(D_{i, j}^{-x} T, 0\right)^{2}+\min \left(D_{i, j}^{x} T, 0\right)^{2}\right. \\
+ & \left.\max \left(D_{i, j}^{-y} T, 0\right)^{2}+\min \left(D_{i, j}^{y} T, 0\right)^{2}\right)^{\frac{1}{2}}
\end{aligned}=\frac{1}{F\left(x_{i}, y_{j}\right)}
$$

- Iterative solver
- Data Dependency


## Numerical Method

- Fast Marching Method

(a) Start with an accepted point

(e) Choose the smallest value (i.e. D)

(d) Freeze value of A, update its neighbors

(b) Update neighbors values

(f) Freeze value of D, update its neighbors



## Sequential Implementation

- Fast Marching demo
- Convergence
- Complexity



$$
\begin{gathered}
C(N)=N^{3,3462} \\
C_{\text {optimal }}(N)=N^{3} \log N
\end{gathered}
$$

## Parallel Implementation

- Ghost cells


CPU 3


## Parallel Implementation

- Ghost cells



## Parallel Implementation

- Ghost cells




## Parallel Implementation

- Ghost cells




## Parallel Implementation

- Ghost cells



## Parallel Implementation

- Ghost cells



## Parallel Implementation

- Ghost cells



## Parallel Implementation

- Ghost cells




## Parallel Implementation

- Ghost cells




## Parallel Implementation

- Ghost cells




## Parallel Implementation

- Fast Sweep

(a) After Local FM

(b) After Ghost Update


## Parallel Implementation

- Iterations $\quad$ nit $=n+m+1$
- Complexity

$$
C(N, n)=(2 n+1) \frac{N^{\alpha}}{n^{\alpha}}
$$

- Scability

$$
s c \approx \frac{n^{2,35}}{2}
$$

## Parallel Implementation

- Results




## Parallel Implementation

- Comparaison



## Conclusion

- Good Scability
- Unequal load of the processes

Questions

