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front is viewed as a burning flame, then once a particle burnt it stayed burnt”.

Therefore, from the family of solutions, we pick the physically reasonable solution,

with the shape presented in Figure 1.2(b).

Equation (1.1) is a particular form of first-order Hamilton-Jacobi equation.

The Dirichlet problem for a static Hamilton-Jacobi equation can be written in

the form:










H(x, Du) = 0 on Rn × (0,∞)

u = φ on Rn × {t = 0} ,
(1.2)

where the Hamiltonian H = H(x, Du) is a continuous real valued function on

Rn × Rn ([8], pg. 539), and φ : Rn → R is a given initial function.

In general, this equation does not have classical solutions, i.e. solutions which are

C1. The problem does have generalized solutions, which are continuous and satisfy

the partial differential equation almost everywhere. Using the notion of viscosity

solution, introduced by Crandall and Lions [4, 5] for first-order problems, one can

choose the correct “physical” solution from the multitude of solutions.

1.1 Viscosity Solutions

1.1.1 Motivation

Let us consider the unidimensional Eikonal equation with homogeneous Dirichlet

boundary condition:










|u′(x)| = 1 in (−1, 1)

u(x) = 0, x = ±1.
(1.3)

The general solution of the differential equation is u = ±x + c. We cannot choose

a sign for x and a constant of integration to satisfy both boundary conditions, but

there are weak solutions that satisfy the differential equation almost everywhere.
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The function:

u(x) = 1− |x|

satisfies the boundary conditions and satisfies the differential equation everywhere

except x = 0. This solution gives the distance to the boundary of the domain, but

is not unique. As shown in Figure 1.3, there exists infinitely many weak solution:

continuous function with slope ±1, satisfying almost everywhere the boundary

conditions.

(a) (b)

(c) (d)

FIGURE 1.3. Weak solutions of |u′| = 1, u(−1) = u(1) = 0

By adding a small viscosity term to Equation (1.3), one can obtain a second-

order equation for uε(x):










−εu′′
ε + |u′

ε| = 1 in (−1, 1)

uε(−1) = uε(1) = 0, ε ≥ 0.
(1.4)

It is well known that equation (1.4) has a unique solution of the form:

uε(x) = 1− |x| + εe−1/ε(1− e(1−|x|)/ε).
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Numerical	
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Numerical	
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•  Fast	
  Marching	
  Method	
  

        accepted values 

    upwind side 

far away values 

narrow band 
values

downwind side

FIGURE 2.2. Far away, narrow band and accepted nodes

• sweep the front ahead by considering the narrow band points,

• march this narrow band forward, freezing the values of existing points and

bringing new points into the narrow band.

The key is in selecting which grid point in the narrow band to update. The algo-

rithm will stop when all the nodes become accepted.

2.2 Fast Marching Algorithm Description

Let Ω be the rectangular domain (0, 1)×(0, 1) of R2. Given the discretization steps

∆x =
1

N
, ∆y =

1

M
> 0, we denote by Tij the value of our numerical approximation

of the solution at (xi, yj) = (i∆x, j∆y), i = 0, . . . , N, j = 0, . . . , M . Similarly, Fi,j

represents the value of F at node (xi, yj).

We define the neighbors of a grid point (xi, yj):

Definition 2.1. The set of neighboring nodes of a grid point X = (xi, yj) is:

V (X) = {(xi+1, yj), (xi−1, yj), (xi, yj+1), (xi, yj−1)} ,
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(a) Start with an accepted point
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B X D
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(b) Update neighbors values

     

C

B X D
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(c) Choose the smallest value (i.e. A)

     

C

B X D

A

(d) Freeze value of A, update its neighbors

     

C

B X D

A

(e) Choose the smallest value (i.e. D)

     

C

B X D

A

(f) Freeze value of D, update its neighbors

FIGURE 2.3. Update procedure for Fast Marching Method
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Parallel	
  Implementa,on	
  

•  Ghost	
  cells	
  

All of the above are main obstacles for good scalability.

To overcome these problems, ghost-zones with ghost points are used. Ghost-zones

are additional (duplicated) grid points which are added to each processor and they

contain necessary data to advance to the next iteration. Hence, we expand each

sub-domain by adding 1 layer of ghost nodes. All ghost-nodes of a sub-domain form

the ghost-zone or overlap of that sub-domain. Figure 3.1 illustrates the particular

decomposition of a two dimensional 10× 10 grid into four sub-domains.

Inter-subdomains 

communication

CPU 0 CPU 1

CPU 2 CPU 3

One CPU

FIGURE 3.1. Domain decomposition in sub-domains, the dark blue cells are the ghost
cells, the dashed line delimits the ghost-zone for the top right sub-domain
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•  Fast	
  Sweep	
  
for this particular case, we describe how the synchronization procedure works step

by step for each sub-domain.

min ghost value = Y 

min ghost value = X 

(a) After Local FM

T>Y
FA

Level line
T= X 

Kept (A)

T<Y

Kept (A)

T<X

Level line 
T= Y 

FA

T>X

(b) After Ghost Update

FIGURE 3.4. Ghost points update

Step 1: for all Ωk and all X ∈ ∂Ωk, let T
n+ 1

2

k be the solution of the local Eikonal

equation at X in Ω̃k. If T
n+ 1

2

k (Xi,j)k < T n
k (Xi,j), we say that Xi,j is a node with

ghost point influence in Ωk (colored in blue in Figure 3.4(a)). If T
n+ 1

2

k (Xi,j) =

T n
k (Xi,j), we say that Xi,j is an accepted node, and its T will not change in Ωk

(colored in red in Figure 3.4(a)).

Step 2: for all Ωk and for any node Xi,j ∈ ∂Ωk, we do a comparison so that we

can reassign the flags and reconstruct the accepted and narrow band sets:

if T
n+ 1

2

k (Xi,j) ≤ T n
k (Xi,j) then tagXi,j ∈ NB(Ωk)

otherwise tagXi,j ∈ A(Ωk).

Step 3: let T
n+ 1

2

k = min
Y ∈NB(∂Ωk)

T
n+ 1

2

k (Y ) be the minimum T on the narrow

band. We use T
n+ 1

2

k to update the flags of the whole sub-domain, i.e. for all
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nit = n+m+ 1

C(N,n) = (2n+ 1)
N↵

n↵

sc ⇡ n2,35
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