
Distributed Sparse Matrices in Julia

George Xing

December 16, 2011

1 Introduction

Sparse matrices have a broad use in scientific computing, with applications
including but not limited to computational fluid dynamics, circuit analysis, and
numerical approximations to partial differential equations. They are particularly
useful for large-scale problems, where otherwise infeasible operations can be
performed by removing the overhead of operating on and storing zeros. For even
larger problems, it may be necessary to distribute data over several processors.

In this report, we discuss the design choices behind an ongoing implementa-
tion of a distributed sparse matrix type in Julia. We first give a brief overview
of the notion of (local) sparse matrices, and Julia’s implementation of this. We
follow with an exposition of the distributed extension of sparse matrices. We
exhibit a possible, if impractical, use case, in the form of solving the minimal
cost spanning tree problem. Finally, we conclude with a discussion of possible
improvements and future work.

2 Sparse Matrices

2.1 Design Principles

The implementation of sparse matrices in Julia follows principles which adhere
closely to those of MATLAB [1]. Given a matrix, there are several possible
ways to represent its values. In selecting between these alternatives, several
considerations must be made. Memory use should be minimal – the memory
used should scale with the number of nonzero elements of the matrix, not its
total number of elements. Additionally, the time taken to perform a sparse
operation should be proportional to the number of nonzero operations in its
equivalent dense operation. In particular, this suggests that we should make it
possible to iterate over the nonzero values (and only those) of a sparse matrix.
Such a consideration dismisses, for example, a implementation with index tuple
keys hashed to their corresponding nonzero values, for to be able to iterate
over its keys, we may as well store its keys in an array. Though it is possible
to use specialized schemes for differently structured matrices (for example, we
can simply store the diagonals of a banded matrix), we make no attempt to do

1

so for the sake of simplicity. In the end, we used the same storage scheme as
MATLAB, the Compressed Sparse Column (CSC) format.

2.2 The Compressed Sparse Column Format

Suppose we had a m × n matrix A with many zeros, and we’d like to store its
nonzero values. Let nnz(A) denote the number of nonzero values of A. A simple
method would be to store all indexes where the matrix is nonzero, and their
corresponding nonzero values. For example, we could have three arrays rowval,
colval, and nzval, each of length nnz(A), where A[rowval[i], colval[i]] =
nzval[i], for 1 ≤ i ≤ nnz(A), and every other entry of A is zero. We could also
store the indexes in some sorted order; for our purposes, let us order them in
dictionary order, first by column index, then by row index. For examples, the
5× 4 matrix

A =


1 4 7
2
3 8 10

5 11
6 9


would be transformed into

rowval = [1, 2, 3, 1, 4, 5, 1, 3, 5, 3, 4],
colval = [1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4],
nzval = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11].

This representation doesn’t always save space; notice that in this particular
example, the original matrix had size 20, but we used 33 elements to represent
it. In general, if we make the conservative assumption that each element in
rowval, colval, nzval takes up the same amount of memory (this is often the
case in Julia, where 64-bit integers are common, but with 32-bit integer indices
and 64-bit floating point numbers, this isn’t always the case), then this saves
space when less than one-third of the matrix is populated.

We also note that since the colval array is simply a rising sequence of the
column index, we can save space by replacing it with a colptr array of size
n + 1, such that the indexes from colptr[i] to colptr[i + 1] − 1 in rowval

represent values in the i-th column. In our example above, the corresponding
replacement would be colptr = [1, 4, 7, 9, 12].

The three arrays colptr, rowval, and nzval make up the CSC format.
(Actually, in our implementation, we have a nvals field which stores the number
of nonzeros values in our matrix, and only the initial values of rowval and nzval

are used, leaving space for additional storage, if necessary.)
This format has several tradeoffs. On the one hand, iteration over the

nonzero values of a column is trivial, which is useful for operations such as
matrix-vector or matrix-matrix multiplication. On the other hand, operations
like elementwise reference and assign, which would take constant time in a dense
representation, take O(log nnz) and O(nnz) respectively, where nnz denotes the
number of nonzero values of the matrix.

2

3 Distributed Sparse Matrices

For larger problems, it may be desired or even necessary to partition data among
several processors. We introduce the DSparseMat type, based off of the DArray

type, which accomplishes this for sparse matrices.

3.1 Distributing a Sparse Matrix

To split up the data of a matrix over several processors, we simply divide it into
contiguous block columns and assign a block column to each processor. Each
processor also stores several metadata fields, including pmap and dist, which are
arrays of size np and np+ 1, respectively (where np is the number of processors
in the distributed sparse matrix), such that the processor with number pmap[i]
owns columns dist[i] through dist[i+ 1]− 1. These fields allow any processor
to be able to find the (other) processors which own the data involved in a query,
and send the appropriate messages to recieve this data or have it altered.

3.2 Distributed Operations and Indexing on DSparseMat

Objects

Our goals in designing a type for a distributed sparse matrix include ease of
access and flexibility for the end user. We would like Julia users to be able to
think of data accesses in terms of indexing when possible, rather than being
locked in a message-passing or other traditional parallel paradigm.

Every time an indexing operation (either ref or assign) is called on a dis-
tributed sparse array, we sort the column indices, and using the dist and pmap

fields, determine which processors have the data we need to construct the ma-
trix. We then send a message (in the form of a remote call, a request to run a
function and return its value) to each processor involved. Each processor runs
this request locally, which is a local sparse matrix reference or assignment. In
the case of ref, the results are relayed back to the original processor, which ag-
gregates the data. This aggregation can be done by copying individual columns
(in the form of subsections of rowval and nzval arrays) in the original order of
the reference assignment, and combining these to form rowval and nzval fields
of the entire sparse matrix.

Other operations on the entire matrix can have their work distributed across
processors. For example, a matrix-vector multiplication can be done by having
each processor compute the value of its local piece times the vector, and having
all local answers added up in a parallel reduce. More complicated functionality
is not yet supported; it is our hope that we have provided a framework which
allows others (as well as ourselves) to add this functionality, in both direct and
sparse methods.

3

4 Minimal Cost Spanning Trees

We apply our distributed sparse matrix problem to solving the minimal cost
spanning tree problem. As it will turn out, our choice of algorithm, selected
for its simplicity and immediate application to this type, will be impractical for
even small problem sizes.

4.1 Definitions

We are given an undirected graph G = (V,E) (with vertex set V and edge
set E). We call a subset of its edges C ⊂ E a cycle if is equal to the set
{(v1, v2), (v2, v3), . . . , (vk, v1)} for some k and v1, v2, . . . , vk. (We say that (u, v) =
(v, u), since the graph is undirected.) We call a subset of its edges F ⊂ E a
forest if it contains no cycles. We call a subset of its edges T ⊂ E a tree if it is
a forest, and the edges form one connected component (excluding any singleton
vertices). Finally, we call a subset of its edges T ⊂ E a spanning tree if it is a
tree with cardinality |V | − 1; i.e., one that connects all vertices. Note that G is
connected if and only if it has a spanning tree.

Given a connected, undirected graph G = (V,E) and a cost function c : E →
R, we let c(T) =

∑
e∈T c(e), for any T ⊂ E. The minimal cost spanning tree

problem is to find the minimum value of c(T) over all spanning trees T .

4.2 Prim’s Algorithm

The minimal spanning tree problem has been extensively studied and has many
algorithms, such as a linear time randomized algorithm due to Karger, Klein,
and Tarjan [2], and a deterministic O(|E|α(|E|)) time algorithm due to Chazelle
[3]. Prim’s algorithm, on the other hand, is a simple, O(|V |2) algorithm. It runs
as follows. Given G = (V,E) with cost function c:

• Set Vdone = {v0} for an arbitrary v0 ∈ V . Set d to be an array indexed
by the vertices, with all values initialized to ∞. Set cost = 0.

• For v ∈ V {v0} such that (v, v0) ∈ E, set d[v] = c(v0, v).

• While Vdone 6= V :

– Set u = argmin{d[v]|v ∈ V \Vdone}.
– Set Vdone = Vdone ∪ {u}.
– For v ∈ V \Vdone such that (v, u) ∈ E, set d[v] = min(d[v], c(u, v)).

– Set cost = cost+ d[u].

At a high level, this algorithm maintains Vdone, a set of vertices initialized to
be an arbitrary vertex, and at each step finds the vertex not in Vdone closest to
it, and adds this vertex (incrementing the total cost of the tree appropriately),
doing this until there are no vertices to be added.

4

4.3 Implementing Prim’s Algorithm with Distributed Mem-
ory

To start, we may assume that all costs in the graph are positive by adding a
sufficiently large cost M to each edge of the graph. This changes the result
only by adding (|V | − 1)M to the cost, which we can simply subtract at the
end. Then, we may represent our graph G = (V,E) as an adjacency matrix A,
where A[i, j] = A[j, i] = c(i, j) if (i, j) ∈ E, and A[i, j] = A[j, i] = 0 otherwise.
By representing A as a sparse matrix, we are able to easily iterate over the
neighbors of any vertex: they are simply represented by the nonzero values in
a column.

Our parallel implementation simply does the following: it distributes A and
d across all processors. To find u, the next closest-vertex, is an argmin opera-
tion over the distributed array d; this is done with a parallel reduce, and has an
asymptotic runtime of O(log p), where p is the number of processors. Once this
minimal vertex is found, the result is sent to all processors, which do the corre-
sponding updates locally. In total, the serial O(|V |2) work is split among the p
processors, and there are |V | steps of communication, giving a total runtime of
O(|V |2/p+ |V | log p).

4.4 Results and Discussion

Below, we show the results of our parallel implementation on 1 (a serial version),
2, and 4 processors on varying problem sizes (shown are the values of |V |, with

|E| ≈ 1.1 ln |V |
|V |).

1000 2000 3000 4000 5000
1 0.00484 0.018801 0.054413 0.0743 0.11729
2 4.5325 9.608 14.9646 27.6719 33.3689
4 51.071 95.141 141.206 193.537 234.467

It’s clear that this parallel algorithm performs quite abysmally compared to a
serial version, going about 284 times slower for 2 processors than in serial, and
even experiencing a parallel slowdown when adding more processors. Our choice
of algorithm was poor in this case; for each round, the time taken to do the local
search and update is completely dominated by the communication overhead.

For the specific case of this problem, it would likely be better to use a
form of Bor̊uvka’s algorithm, which maintains a forest of connected components,
and can independently add edges to each. This would allow for more local
computation before communication, cutting down on the overhead.

5 Future Work

I plan to continue to work on the Julia project, maintaining and adding func-
tionality to the sparse matrix and distributed sparse matrix classes. Julia’s
current functionality on these fronts is, for lack of a more fitting word, sparse.

5

I hope to soon integrate SuiteSparse [4], Tim Davis’s large C library for direct
sparse methods. From here, I will possibly round out more functionality in the
sparse classes, as well as optimize existing code for competitiveness with MAT-
LAB. An eventual goal of mine would be to implement some distributed direct
methods, such as a parallel LU or Cholesky decomposition; this, however, would
be a quite nontrivial task.

6 Acknowledgements

Many thanks to Prof. Alan Edelman, whose interesting, insightful, and humor-
ous lectures helped get me interested in sparse matrices. Also many thanks to
the original developers of Julia: Jeff Bezanson, Viral Shah, and Stefan Karpin-
ski. Special thanks go out to Jeff, whose DArray class I borrowed from, and
Viral, who was responsible for many of the inital sparse matrix features.

References

[1] Gilbert, John R., Cleve Moler, and Robert Schreiber, “Sparse Matrices in
MATLAB: Design and Implementation,” SIAM J. Matrix Anal. Appl., Vol.
13, No. 1, 1992

[2] Karger, David R.; Klein, Philip N.; Tarjan, Robert E., “A randomized linear-
time algorithm to find minimum spanning tree”, Journal of the Association
for Computing Machinery, Vol. 42 No. 2, 1995

[3] Chazelle, Bernard, “A minimum spanning tree algorithm with inverse-
Ackermann type complexity”, Journal of the Association for Computing
Machinery, Vol. 47, No. 6, 2000

[4] Davis, Tim, “SuiteSparse”, http://www.cise.ufl.edu/research/sparse/
SuiteSparse.

6

