
Distributed Sparse Matrices and MST in Julia

George Xing

Massachusetts Institute Of Technology

December 14, 2011

George Xing Distributed Sparse Matrices and MST in Julia



Overview

Sparse Matrices

Distributed Sparse Matrices

Minimal Spanning Trees and Prim’s Algorithm

Future Work

George Xing Distributed Sparse Matrices and MST in Julia



Sparse Matrices

We’d like to be able to store the nonzero values of a matrix that has
a “lot” of zeros.

Considerations:

memory
structure?
iteration over nonzero values

George Xing Distributed Sparse Matrices and MST in Julia



Compressed Sparse Column (CSC) Format

Store indices with nonzero values in dictionary order (column, then
row) and their corresponding values in matrix.

Instead of an m × n matrix A with nnz nonzero values, maintain
three fields: colptr, rowval, nzval

colptr: array of length n + 1. Column i ’s values are in the indices
from colptr[i ] to colptr[i + 1]− 1.
rowval: array of length nnz . Stores a row index.
nzval: array of length nnz . Stores the nonzero value; if
colptr[i ] ≤ j ≤ colptr[i + 1]− 1, then nzval[j ] = A[rowval[j ], i ].

Good: arithmetic operations, general linear algebraic operations,
column slicing

Bad: referencing, assigning, structured matrices

George Xing Distributed Sparse Matrices and MST in Julia



Distributed Sparse Matrices

Distribute the memory of a (large) sparse matrix over multiple
processors. (currently limited to distributing contiguous blocks of
columns)

Each processor stores a local piece (in CSC format), a list of all
processors involved, and a mapping of where each piece is located.

pmap and dist, where the i-th block is columns dist[i ] to
dist[i + 1]− 1 and on processor pmap[i ]

George Xing Distributed Sparse Matrices and MST in Julia



Operations on Distributed Sparse Matrices

Goal: make end user not have to think too hard about coordinating
parallelism

Matrix operations automatically coordinate the processors with
relevant data (ex. multiply, ref, assign)

George Xing Distributed Sparse Matrices and MST in Julia



The Minimal Cost Spanning Tree Problem

Given a connected, undirected graph G = (V ,E ), a spanning tree is
a subset of edges T ⊆ E such that |T | = |V | − 1 and T contains no
cycles.

Given G and a cost function c : E → R on the edges, let
c(T ) =

∑
e∈T c(e). We are interested in finding the minimum value

of c(T ) over all spanning trees T .

Applications: network design/routing, image segmentation,
subroutine for harder problems

George Xing Distributed Sparse Matrices and MST in Julia



Prim’s Algorithm (serial)

Given G = (V ,E ) with cost function c :

Set Vdone = {v0} for an arbitrary v0 ∈ V . Set d to be an array
indexed by the vertices, with all values initialized to ∞. Set
cost = 0.

For v ∈ V {v0} such that (v , v0) ∈ E , set d [v ] = c(v0, v).

While Vdone 6= V :

Set u = argmin{d [v ]|v ∈ V \Vdone}.
Set Vdone = Vdone ∪ {u}.
For v ∈ V \Vdone such that (v , u) ∈ E , set d [v ] = min(d [v ], c(u, v)).
Set cost = cost + d [u].

George Xing Distributed Sparse Matrices and MST in Julia



Implementing Prim’s Algorithm (serial)

Assume all costs are positive. (c ′ = c + N)

Represent graph G as adjacency matrix A, where
A[i , j ] = A[j , i ] = c(i , j) if (i , j) ∈ E , and A[i , j ] = A[j , i ] = 0
otherwise.

Sparse graph? Make the matrix sparse!

George Xing Distributed Sparse Matrices and MST in Julia



Implementing Prim’s Algorithm (parallel)

Opportunity for parallelism in the while loop (finding the next node,
and updating values).

Distribute the matrix A and the vector d .

At each step, each processor submits its local closest vertex, and a
parallel reduce finds the overall minimum. This choice is broadcast
to all processors, which then independently update.

George Xing Distributed Sparse Matrices and MST in Julia



(Possible) Improvements

Better data structure for d improves asymptotics:

Original: O(|V |2/p + |V | log p), where p is number of processors
Binary heap: O((|E | log |V |)/p + |V | log p)
Fib heap: O((E + |V | log |V |)/p + |V | log p).

initial pruning (solving minimum spanning forest locally)

load balancing, dynamic reallocating

George Xing Distributed Sparse Matrices and MST in Julia



Caveats

Much better asymptotics possible: O(|E |α(|E |)) in serial (Chazelle),
or O(

√
|V | log∗ |V |+ D) for distributed (Kutten, Peleg), where D is

graph diameter

Current preduce doesn’t use a log-depth tree

Parallel implementation still incomplete (tsk, tsk)

George Xing Distributed Sparse Matrices and MST in Julia



Future Work

Local and distributed sparse functionality: a (giant) work in progress

integrating SuiteSparse

optimization, benchmarking versus Matlab (and others)

log-depth broadcast, preduce

(improved) interface for reallocation

George Xing Distributed Sparse Matrices and MST in Julia



Acknowledgements, Q&A

Many thanks to Professor Edelman, Jeff Bezanson, Viral Shah, and
Stefan Karpinski.

Questions?

George Xing Distributed Sparse Matrices and MST in Julia


