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Sparse Matrices

We’d like to be able to store the nonzero values of a matrix that has
a “lot” of zeros.

Considerations:

memory
structure?
iteration over nonzero values
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Compressed Sparse Column (CSC) Format

Store indices with nonzero values in dictionary order (column, then
row) and their corresponding values in matrix.

Instead of an m × n matrix A with nnz nonzero values, maintain
three fields: colptr, rowval, nzval

colptr: array of length n + 1. Column i ’s values are in the indices
from colptr[i ] to colptr[i + 1]− 1.
rowval: array of length nnz . Stores a row index.
nzval: array of length nnz . Stores the nonzero value; if
colptr[i ] ≤ j ≤ colptr[i + 1]− 1, then nzval[j ] = A[rowval[j ], i ].

Good: arithmetic operations, general linear algebraic operations,
column slicing

Bad: referencing, assigning, structured matrices

George Xing Distributed Sparse Matrices and MST in Julia



Distributed Sparse Matrices

Distribute the memory of a (large) sparse matrix over multiple
processors. (currently limited to distributing contiguous blocks of
columns)

Each processor stores a local piece (in CSC format), a list of all
processors involved, and a mapping of where each piece is located.

pmap and dist, where the i-th block is columns dist[i ] to
dist[i + 1]− 1 and on processor pmap[i ]
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Operations on Distributed Sparse Matrices

Goal: make end user not have to think too hard about coordinating
parallelism

Matrix operations automatically coordinate the processors with
relevant data (ex. multiply, ref, assign)
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The Minimal Cost Spanning Tree Problem

Given a connected, undirected graph G = (V ,E ), a spanning tree is
a subset of edges T ⊆ E such that |T | = |V | − 1 and T contains no
cycles.

Given G and a cost function c : E → R on the edges, let
c(T ) =

∑
e∈T c(e). We are interested in finding the minimum value

of c(T ) over all spanning trees T .

Applications: network design/routing, image segmentation,
subroutine for harder problems
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Prim’s Algorithm (serial)

Given G = (V ,E ) with cost function c :

Set Vdone = {v0} for an arbitrary v0 ∈ V . Set d to be an array
indexed by the vertices, with all values initialized to ∞. Set
cost = 0.

For v ∈ V {v0} such that (v , v0) ∈ E , set d [v ] = c(v0, v).

While Vdone 6= V :

Set u = argmin{d [v ]|v ∈ V \Vdone}.
Set Vdone = Vdone ∪ {u}.
For v ∈ V \Vdone such that (v , u) ∈ E , set d [v ] = min(d [v ], c(u, v)).
Set cost = cost + d [u].
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Implementing Prim’s Algorithm (serial)

Assume all costs are positive. (c ′ = c + N)

Represent graph G as adjacency matrix A, where
A[i , j ] = A[j , i ] = c(i , j) if (i , j) ∈ E , and A[i , j ] = A[j , i ] = 0
otherwise.

Sparse graph? Make the matrix sparse!
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Implementing Prim’s Algorithm (parallel)

Opportunity for parallelism in the while loop (finding the next node,
and updating values).

Distribute the matrix A and the vector d .

At each step, each processor submits its local closest vertex, and a
parallel reduce finds the overall minimum. This choice is broadcast
to all processors, which then independently update.
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(Possible) Improvements

Better data structure for d improves asymptotics:

Original: O(|V |2/p + |V | log p), where p is number of processors
Binary heap: O((|E | log |V |)/p + |V | log p)
Fib heap: O((E + |V | log |V |)/p + |V | log p).

initial pruning (solving minimum spanning forest locally)

load balancing, dynamic reallocating
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Caveats

Much better asymptotics possible: O(|E |α(|E |)) in serial (Chazelle),
or O(

√
|V | log∗ |V |+ D) for distributed (Kutten, Peleg), where D is

graph diameter

Current preduce doesn’t use a log-depth tree

Parallel implementation still incomplete (tsk, tsk)
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Future Work

Local and distributed sparse functionality: a (giant) work in progress

integrating SuiteSparse

optimization, benchmarking versus Matlab (and others)

log-depth broadcast, preduce

(improved) interface for reallocation

George Xing Distributed Sparse Matrices and MST in Julia



Acknowledgements, Q&A

Many thanks to Professor Edelman, Jeff Bezanson, Viral Shah, and
Stefan Karpinski.

Questions?

George Xing Distributed Sparse Matrices and MST in Julia


