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Abstract

The Quadratic Number Field Sieve (QS) provides a fast and easy
to implement method to factor a number. QS works by setting up a
congruence of squares modulo n, which gives us a factor of n roughly
2/3 of the time. I set out to implement QS in parallel in MIT Cilk
using the Gnu Multiple Precision Library. I succeeded in improving
the performance of two functions in QS through parallelization. My re-
sults agreed with previously shown performance. Specifically, the data
collection phase of QS is parallelized better than the data process-
ing phase[3]. An efficient way of handling the data processing phase
remains to be shown.

1 Introduction

The problem of factoring large numbers has been the basis of modern se-
curity for years. Most cryptography algorithms rely on the difficulty of
factoring large semi-primes, that is numbers of the form N = pq where p
and q are both large primes of similar size. Attempts to factor large num-
bers are largely for research purposes, as it helps give us an idea of what
size numbers are “safe” from attacks. The current accepted standard is that
N must be about 2048 bits long to be considered secure [1]. This num-
ber, of course, grows as computers become more powerful, however it is still
believed that 4096 bits will remain secure for a very long time.

The Quadratic Number Field Sieve (QS) was discovered in 1981, and was
the asymptotically fastest known algorithm for factoring integers up until
the discovery of the General Number Field Sieve (NFS) in 1996. During its
reign as the fastest factoring algorithm, it managed to set several records,
including finding the factorization of the 129-digit number, RSA-129. QS is
still of interest because it is much easier to understand and implement than
NFS, so it’s an ideal algorithm for a hobbyist to attempt to implement and
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optimize. However, in practice when groups are actually attempting to set
records, they use the NFS.

QS works based off of congruence of squares modulo an integer n. If we
can find a pair of integers a, b such that a2 ≡ b2 mod n, then with about
2/3 probability gcd(|a − b|, n) will be a nontrivial factor of n. QS works
in two stages to find such pairs, the data collection stage, and the data
processing stage. In the data collection stage, we build a very large sparse
matrix over F2. In the data processing stage, we find the right nullspace of
the matrix. The nullspace can be used to find a pair a, b. The first step can
be parallelized fairly trivially, but the data processing stage is significantly
harder to parallelize, because most algorithms require that each node have
access to the entire array, which grows to be quite large.

1.1 Motivation

I was interested in attempting a numerics problem using C or C++ to see
what kind of speed I could get based on my own algorithms. I went in
knowing that it would be unlikely to make any significant improvements over
previously written QS implementations, so my original goal was to optimize
the functions that make up QS as much as possible. There appeared to
be several opportunities for paralleling, and many tuning parameters that
could be optimized, so it thought it would be an ideal problem to work
on. Furthermore, this was my first time ever doing any actual coding for
parallel computing, and only having to worry about embarrassingly parallel
problems seemed like a good idea.

1.2 Implementation Details

I was interested in using MIT Cilk from the start, because it’s based on
C, and made parallelizing relatively simple. Most parallelization was done
through parallel for loops done by recursively dividing the range in half, and
spawning recursively on the two halves. All benchmarking was run locally
on a 4-core Intel i5 750 running at 3 GHz on each core, and 4 GB of RAM.

2 Algorithm

In the data collection stage, QS collects a set of ai, bi such that a2i ≡ bi
mod n. In the data processing stage, we try to find some set of indices,
{s1, s2, ..., sl}, such that

Πl
i=1bsi ≡ b2 mod n
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for some b. Likewise, if we have

Πl
i=1asi ≡ a mod n

then we’ll have found a congruence modulo n:

a2 ≡ b2 mod n

To efficiently find the right set, we look at the prime power representation of
each bi, such that we have bi = pei00 pei11 ...peimm For squares, each exponent ej
will be even, thus we want to find the set of bi who’s product will have even
exponent powers. To simplify this search, we can consider all exponents mod
2, so we’re looking for exponents to all be 0. Now if we bound the size of
the largest prime in the prime power representation, we can represent each
bi as a vector (ei0, ei1, ..., eim), where multiplication of two bi corresponds
to adding the vectors. So if we collect a large amount of bi, we want to
find a set who’s vector sum is 0. If we store the vectors as column vectors
in a large matrix, then finding the correct subset is exactly the problem of
finding the right nullspace.

One of the biggest tricks as to why this algorithm works well is bounding
the largest prime, pm. A number who has no prime factor greater than B is
called B-smooth. In using smooth numbers, we first of all determine the size
of our system, which makes handing all the data easier. But furthermore, it
means we can build up our set of bi in reverse, by selecting numbers who are
products of small primes, as opposed to factoring each bi. Our collection of
primes are called our “factor base”.

The basic idea is as follows. In practice, there are many optimizations
that make this work. We start with an interval of a2i ≡ bi to test. For each
prime, pj , in our factor base, we divide each bi by pj and store the result.
After going through our entire factor base, we look at each value in our
interval that is 1, and those will be our B-smooth numbers. We then use
these to build up our matrix and find the nullspace.

In practice, of course, this would be highly inefficient. The first perfor-
mance trick is generating the ai via a polynomial. We use a polynomial
of the form f(x) = (Ax + B)2 − n. Note that f(x) mod n ≡ (Ax + B)2

mod n, so therefore we have ai = Ax + B, and bi = f(x). If we solve
f(x) ≡ 0 mod p for prime p, then we’ll find a bi that p is a factor of. But
more importantly, notice that for a given root α, that f(α+kp) ≡ 0 mod p
for integer k. So we can find all bi that are multiple of p with one calculation.
Actually dividing each number would be far too expensive, so instead we
subtract (or equivalently, add) logarithms of pj for each f(α + kp). Thus
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we can start each value in our range at 0, and add up log pj until the sum
is equal to log bi. Another trick we can do is to use the integer logarithm,
which is much faster to calculate, but obviously less accurate. This intro-
duces additional errors into the system, but dealing with the errors is easier
than doing the floating point operations.

2.1 Approach

My approach was to look at the problems and functions that are used fre-
quently in QS and see what improvements I could make. I came up with
five problems that came up frequently in QS: primality checking, modular
square root, GCD, factoring “small” numbers, and calculating the nullspace
over the finite field F2. These all come up frequently in performing QS, and
my thought was that if I could improve upon them, I could improve the
performance of QS as a whole. In doing research, I found that the mod-
ular square root and GCD algorithms that work best on this data don’t
parallelize well. However, the algorithms for primality testing and factoring
relatively small numbers could be parallelized easily. It wasn’t clear if cal-
culating the nullspace was possible to parallelize. I thus focused my efforts
on primality checking and small number factoring, and then began work on
calculating the nullspace.

2.2 Primality Checking

Primality checking is the problem of determining if a number is prime.
Naively, one could do this by trial division, but that would take O(

√
n),

which can be very very bad for large n. MR runs in O(k log3 n), where k
is a tunable parameter that affects accuracy. MR could actually be called
a “composite checker,” because it checks if a number is composite, and re-
turns prime if it can’t prove it is composite. The basis of MR comes from
Fermat’s little theorem. We start by randomly choosing an integer a. If n
is prime, then one of the following must be true:

ad ≡ 1 mod n for odd d

or
a2

rd ≡ −1 mod n for some r such that 2rd ≤ n− 1

Because there are finitely many equivalences to check, we can just run
through all of them. If we satisfy either of the conditions, then we can
return that the number is prime. If after going through all possible r we
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haven’t satisfied either of these, then we return composite. However, this
test isn’t 100% accurate in this state. There exists combinations of num-
bers, (a, n), where n is composite, that will result in the algorithm returning
prime just by bad luck. For a randomly chosen a, this happens about 1/4
of the time[4]. To fix this, we choose multiple a’s, increasing the probability
that our result is correct with each additional iteration. For k iterations, we
have 1− 4−k accuracy.

Given an a, all the calculations are almost entirely serial to the point
that parallelizing would decrease performance due to overhead. However,
each one of these serial problems can be run in parallel over each core using
a different a on each core. Furthermore, if we ever find an a that confirms
that n is composite, called a “witness” for n, then we can abort all threads
and return composite.

Primality checking is more important in finding all the factors of a ran-
dom number, instead of attempting to factor a chosen large semi-prime.
This is because when factoring a semi-prime, we know we’re done after find-
ing one of the two factors, however we aren’t this lucky when factoring a
random integer.

2.3 Small Number Factoring

There are a few points QS where it is beneficial to be able to factor small or
smooth numbers quickly. The way this is used changes depending on how we
implement QS. For example, as we attempt to find a set of smooth bi, we can
keep track of the factors of every bi stored in an auxiliary array. However,
for factoring large numbers this can waste gigabytes of space, which will
slow us down with more reading and writing to disc. Thus we can ignore
storing factors, and factor the bi after we’ve collected them. There were
two methods I considered for small number factoring: trial division, and the
Pollard-Rho method. I focused on the Pollard-Rho method, as it would be
the most versatile, and the most interesting to work with.

2.3.1 Pollard-Rho

Pollard-Rho is a factoring algorithm that’s based on cycle detection with
a pseudo-random sequence. In factoring n, we define the function f(x) =
x2 + a mod n for some a. We initialize with x = y = 2, a = randint. In
each step we do

x = f(x), y = f(f(y)), d = GCD(|x− y|, n)
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If d 6= 1, then we may have found a nontrivial factor of n. d could be n
though, in which case we return failure. We can run many threads of this
at once, each seeded with a different a, and abort as soon as one returns a
positive factor.

Pollard-Rho has poor performance on large semi-primes, having a the-
orized runtime of O( 4

√
n polylog n). However, for smooth numbers, we’re

expected to find a factor p of n in O(
√
p). So the smaller the factors, the

faster we’re going to find them. The runtime is still dominated by the largest
factor of n, but if n is smooth with a relatively low bound, then we know
that we’ll have fast factoring.

2.3.2 Trial Division

Trial Division only works on very small smooth numbers, as its running
time is bound by O(p) ≈ O(

√
n)[2]. Furthermore, each step is only slightly

cheaper than Pollard-Rho, so its constant factor doesn’t help that much.

3 Results

There was a lot left to be done to have a properly functioning Quadratic
Number Field Sieve. However, there were improvements seen from the initial
stages of parallelization.

3.1 Miller-Rabin Primality Testing

Miller-Rabin was fairly trivial to parallelize, requiring only a parallel for
loop to split the threads up over the cores. I benchmarked my primality
tester against the Gnu Multiple Precision Library’s (GMP) built in primality
tester, which was also based off of Miller-Rabin. I found that for larger
numbers, my tester ran faster on just one core, and ran significantly faster
when run over over multiple cores. The following graph shows the runtimes
of the primality testers in determining that a large semi-prime is prime,
which is computationally the hardest thing for the algorithm to do.

A speedup of over one order of magnitude was achieved with only four
cores for larger numbers. All the methods worked at about the same speeds
for numbers around 100 digits, and GMP’s built in primality tester ran
significantly faster on smaller numbers. GMP’s built in function most likely
uses a different method for smaller numbers, as Miller-Rabin can be a bit
overkill due to the overhead required. Such cutoffs are usually very system
dependent, and change as machines get more and more powerful. Sufficient
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Figure 1: Primality testing on large semi-primes. Runtime vs. number of
digits

testing would have to be done on each system to calibrate cutoff values.
Ideally such a function will be built in future iterations, so that one doesn’t
have to repeatedly guess-and-check manually. The only cutoff performance
tweak done is checking if n is divisible by 2, 3, 5, 7, or 11 before doing
anything else. For testing a random number, this accounts for more than
2/3 of all possible n, so will be able to quickly catch those n.

These results aren’t amazing, but were still very exciting. They showed
how easy it was to see speedup from parallelization. Furthermore, I have yet
to attempt higher levels of optimization beyond high-level concerns about
runtime, which leaves a lot of room for low-level tweaks to improve perfor-
mance.

3.2 Pollard-Rho Factoring

Pollard-Rho performed as expected. It performed significantly faster than
trial division on anything besides very small numbers. It even did a de-
cent job at factoring small semi-primes. For example, it managed to factor
10000001004200000030117 = 100000000003 ∗ 100000010039 in about 2s on
1 core, and about 100 ms on 4 cores. This isn’t considered fast by modern
standards, but it was significantly faster than trial division, which ran for
several minutes before seg-faulting. As such, it was able to quickly factor
randomly generated smooth numbers with a smoothness bound of about
1000000.

Like the Miller-Rabin test, I did not perform any low-level performance
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tweaks. There is likely much room for improvement, and hopefully some
improvements will be made in the future.

4 Discussion and Moving Forwards

Clearly, there is a lot more work needed to be done to have a functional QS
implementation. The biggest hurdle is handling the linear algebra on the
final matrix. The matrix we’re working with can be very large, on the order
of many gigabytes, so performing operations on the whole thing isn’t feasible
on anything short of a supercomputer. Furthermore, the Block Lanczos
algorithm, which is the fastest known algorithm for this data type, really
requires shared memory across all the nodes. So distributed algorithms will
be very difficult to implement. For small numbers, we can safely just store
our array in memory, but as reading and writing to disc become an issue,
runtimes increase exponentially. I would like to spend more time researching
how parallel Block Lanczos can be safely implemented.

There are also faster, but more complicated methods for factoring smooth
numbers such as the Elliptic Curve Method (ECM). ECM has the benefit
that even if the number has a prime factor or two that are above our smooth-
ness bound, ECM will still be able to quickly factor them. However, ECM
is significantly more complex than Pollard-Rho, and as such would be that
much more difficult to parallelize and optimize.

As I mentioned in the results, there remains many places where cutoffs
could be found to optimize performance. For example, I found that be-
low about 100 digits the serial primality tester built into the GMP library
seemed to work faster the my parallel implementation. This is especially
true with the various factoring methods, as different factoring algorithms
work better on all sorts of different kinds of numbers. Pollard-Rho is a
nice, fast, factorization algorithm, but works better on “small” numbers.
ECM similarly works very quickly, and can deal with numbers that have
a few large prime factors. However, my research hasn’t revealed anything
about being able to tell how large the largest prime will be, so there may
not be a way to “analyze” the number before factoring. However, there are
still other places where some theoretical and empirical analysis could really
help performance. For example, we randomly choose seeds for Miller-Rabin,
Pollard-Rho, and multiple polynomial QS. It may be best to leave them as
randomly chosen to keep optimal expected runtime, but it remains to be
actually attempted. I believe that with some research, improvements into
how these numbers randomly chosen.
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There are still a large number of places to look for optimization, many
of which can’t be tested until I have a complete running implementation of
QS. My goal is to get a serial version of Block Lanczos working so I can
begin testing potential optimizations.
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//Miller.cilk 
 
#include <cilk-lib.cilkh> 
#include <stdlib.h> 
#include <stdio.h> 
#include <gmp.h> 
#include <time.h> 
 
#define GRANULARITY 2 
 
/* 
 * The heavy lifting. Returns 1 if it thinks n is prime, 0 if n is composite 
 */ 
cilk int miller_rabin_aux(mpz_t a_base, mpz_t n) 
{ 
  int i=0, s=0, prime=1; // s is proportional to log_2(n) 
  mpz_t a, d, n_minus_one; 
  mpz_init(n_minus_one); 
  mpz_init(a); 
  mpz_init(d); 
  mpz_sub_ui(n_minus_one, n, 1); 
  mpz_set(d,n_minus_one); 
 
  while(mpz_even_p(d)) 
  { 
    mpz_fdiv_q_2exp(d,d,1); 
    s++; 
  } 
   
  mpz_powm(a,a_base,d,n); 
   
  if (mpz_cmp_ui(a,1) == 0) 
  { 
    goto quit; 
  } 
  for (i; i<s-1; i++) 
  { 
    if (mpz_cmp(a,n_minus_one)==0) 
    { 
      goto quit; 
    } 
    mpz_powm_ui(a,a,2,n); 
  } 
  if (mpz_cmp(a, n_minus_one) == 0) 
  { 
    goto quit; 
  } 
  prime = 0; 
  quit: 
    mpz_clear(a); 
    mpz_clear(d); 
    mpz_clear(n_minus_one); 
    return (prime); 
} 
 
/* 
 * Parallel for loop. Uses divide and conquer with granularity 
 */  
cilk int cilk_for(int lo, int hi, gmp_randstate_t state, mpz_t n) 
{ 
  
  int mid, up, down, i, prime; 
  mpz_t a; 
  mpz_init(a); 



  if(hi-lo>GRANULARITY) 
  { 
    mid = (lo+hi)/2; 
    down = spawn cilk_for(lo, mid, state, n); 
    up = spawn cilk_for(mid, hi, state, n); 
    sync; 
    return (up+down)/2; 
  } 
  for (i = lo; i<hi; i++) 
  { 
    mpz_urandomm(a, state, n); 
    prime = spawn miller_rabin_aux(a,n); 
    sync; 
    if(prime == 0) 
    { 
 mpz_clear(a); 
 abort; 
 return(0); 
    } 
  } 
  mpz_clear(a); 
  return (1); 
} 
 
/* 
 * Master function. Runs k iterations of miller_rabin_aux 
 * Returns Prime (1) if every iteration returns prime 
 * Returns Composite (0) if any iteration returns composite 
 */ 
cilk int miller_rabin(mpz_t n, int k) 
{ 
  int prime; 
  gmp_randstate_t state; 
  gmp_randinit_default(state); 
  gmp_randseed_ui(state, time(NULL)); 
   
  if (mpz_fdiv_ui(n, 2)==0 || mpz_fdiv_ui(n, 3)==0 || mpz_fdiv_ui(n, 5) == 0 
|| mpz_fdiv_ui(n, 7)==0) 
  { 
    return (0); 
  } 
  prime = spawn cilk_for(0,k,state,n); 
 
  sync; 
  return (prime); 
} 
 
 
cilk int main(int argc, char *argv[]) 
{ 
  mpz_t n; 
   
  int k=10,prime; 
   
  mpz_init_set_ui(n, 100019); 
  if (argc > 2) 
  { 
    mpz_set_str(n, argv[1], 10); 
    k = atoi(argv[2]); 
  } 
  prime = spawn miller_rabin(n,k); 
  sync; 
  if(prime) 
  { 



    printf("Prime!\n"); 
  } 
  else 
  { 
    printf("Composite!\n"); 
  } 
  mpz_clear(n); 
  return (0); 
} 
 
 
//Pollard-Rho.cilk 
 
#include <cilk-lib.cilkh> 
#include <stdlib.h> 
#include <stdio.h> 
#include <gmp.h> 
#include <time.h> 
#include <miller-rabin.cilkh> 
 
#define GRANULARITY 2 
 
/* 
 * Auxiliary function to do the heavy lifting. Sets "factor" to be the factor 
it finds. 
 * Returns 1 for success, 0 for failure.  
 */ 
cilk int rho_factor_aux(mpz_t factor, mpz_t n, int c) 
{ 
  int factored=0; 
  mpz_t x,y,d; 
  mpz_init_set_ui(x,2); 
  mpz_init_set_ui(y,2); 
  mpz_init_set_ui(d,1); 
   
  while(mpz_cmp_ui(d,1)==0){ 
    mpz_powm_ui(x,x,2,n); 
    mpz_add_ui(x,x,c); 
     
    mpz_powm_ui(y,y,2,n); 
    mpz_add_ui(y,y,c); 
    mpz_powm_ui(y,y,2,n); 
    mpz_add_ui(y,y,c); 
     
    mpz_sub(d,x,y); 
    mpz_abs(d,d); 
    mpz_gcd(d, d, n); 
  } 
  if (mpz_cmp(d,n)==0) 
  { 
    mpz_set_ui(factor, 0); 
  } 
  else 
  { 
    mpz_set(factor, d); 
    factored = 1; 
  } 
  mpz_clear(x); 
  mpz_clear(y); 
  mpz_clear(d); 
  return (factored); 
} 
 
/* 



 * Parallel for loop with granularity 
 */ 
cilk int cilk_for_rho(mpz_t factor, int lo, int hi, mpz_t n) 
{ 
  
  int mid, i, up, down, factored=0; 
  mpz_t down_factor, up_factor; 
  mpz_init(down_factor); 
  mpz_init(up_factor); 
  if(hi-lo>GRANULARITY) 
  { 
    mid = (lo+hi)/2; 
    down = spawn cilk_for_rho(down_factor, lo, mid, n); 
    up = spawn cilk_for_rho(up_factor, mid, hi, n); 
    sync; 
    if (down) 
    { 
      factored = 1; 
      mpz_set(factor,down_factor); 
    } 
    else if (up) 
    { 
      factored = 1; 
      mpz_set(factor, up_factor); 
    } 
    goto quit; 
  } 
  for (i = lo; i<hi; i++) 
  { 
    factored = spawn rho_factor_aux(factor, n,i); 
    sync; 
    if(factored) 
    { 
      abort; 
      goto quit; 
    } 
  } 
   
  quit: 
    mpz_clear(down_factor); 
    mpz_clear(up_factor); 
    return (factored); 
} 
 
/* 
 * Function that actually gets called 
 * In this implementation, it just prints the factors as it finds them 
 *   and repeats until all prime factors are found 
 */ 
cilk int rho_factor(mpz_t n, int k) 
{ 
   
  int factored, prime = 0; 
  mpz_t factor, cofactor; 
  mpz_init(factor); 
  mpz_init(cofactor); 
  while(1); 
  { 
    factored = spawn cilk_for_rho(factor, 1, k, n); 
    sync; 
    mpz_tdiv_q(cofactor, n, factor); 
    prime = spawn miller_rabin(factor, k); 
    sync;  
    if (prime) 



    { 
      gmp_printf("Factor: %Zd\n", factor);  
      mpz_tdiv_q(n, n, factor); 
    } 
    else 
    { 
      prime = spawn miller_rabin(cofactor, k); 
      if (prime) 
      { 
        mpz_set(n, cofactor); 
      } 
  } 
  return(1); 
} 
 
cilk int main(int argc, char *argv[]) 
{ 
  int prime, factor, k=10; 
  mpz_t n;   
  mpz_init_set_ui(n, 4725); 
  if (argc > 2) 
  { 
    mpz_set_str(n, argv[1], 10); 
    //k = atoi(argv[2]); 
  } 
  prime = spawn miller_rabin(n,k); 
  sync; 
  if(prime) 
  { 
    gmp_printf("%Zd is Prime!\n", n); 
  } 
  else 
  { 
    factor = spawn rho_factor(n, k); 
    sync; 
    //printf("Factor is: ", factor); 
  } 
  mpz_clear(n); 
  return (0); 
} 


