
Report on the Feasibility of Implementing PIC Codes
on a GPU

Joshua Payne

December 20, 2011

Abstract

GPUs have become a very attractive supplement to traditional high performance
computing. GPUs have significantly better performance per cost and power con-
sumption. However, GPUs introduce several additional levels of parallelism that
must be contended with. New methods must be developed in order to take full
advantage of the capabilities of this architecture. This paper explores the appli-
cation of GPUs to particle tracking codes for plasma physics such as the NTCC
Transp module NUBEAM. This code will outline how the ORBALL subroutine of
NUBEAM was ported to the GPU with a 13x speedup, as well as present several
general guidelines concerning implementing particle tracking codes.

1

1 Introduction

Simulating plasma behavior can be incredibly difficult. The equations that govern plasma
behavior are incredibly non-linear due to significance of self forces. One of the best ways
to simulate plasma behavior is by simulating the behavior of individual particles. Track-
ing the movements and interactions of a small fraction of the 1020/m3+ particles can
provide a very accurate representation of the bulk behavior of a real plasma. The prob-
lem with the these particle tracking codes is that they require a very large number of
particles in order to achieve a reasonable accuracy on the order of tens of millions for
small simulations up to tens of billions for large.

The large number of particles that these codes track means that they can be very
slow. One way to reduce the computation time is to distribute the particle tracking
across multiple processors. The ideal architecture for these codes would have a very large
number of simple processors with very fast communication.

Figure 1: Performance comparison of GPUs
vs CPUs.

Graphical processing units or GPUs are
designed to trace rays of light and gener-
ate an image. Ray tracing and particle
tracking are incredibly similar and because
of this, GPUs have the potential to make
great particle tracking processors. How-
ever, there are some issues with moving
to a new architecture. The shear amount
of processing power reduces the time of
many computations to the point where
moving the data to and from the processor
is more expensive than the computation.
The lack of a large cache means that data
access patterns and organization are signif-
icantly more important. Coupling GPUs
and MPI introduces multiple levels of par-
allelism that have very different character-
istics. Figure 2 illustrates the multiple lev-
els of parallelism that an MPI-GPU system
contains.

The key to developing a high performance particle tracking code is properly decom-
posing and organizing the problem at each level of the multi-parallel tree. The complexity
of the particle mover, collision operator, and timescale of the problem play large roles in
how the problem is decomposed. This report will focus primarily on the fast ion orbit
integration routines of the NTCC transp code NUBEAM [4], but will also draw on several
key features of a generalized PIC code.

2

Figure 2: Multiple levels of parallelism. (1) Cluster of systems communicating through a
LAN. (2) Multiple GPUs per system communicating through the PCIe bus. (3) Multiple
streaming multiprocessors per GPU execute thread-blocks and communicate through
GPU global memory. (4) Multiple cuda cores per multiprocessor execute thread-warps
and communicate through on chip shared memory.

3

2 NUBEAM: Modeling Fast Ion Orbits

Nubeam is a Monte-Carlo code used to model neutral beam injection in tokamaks. The
code consists of two primary subroutines. The first is Depall, which tracks beam neutrals
to their ionization point. Depall accounts for about 15% of the total run-time. The sec-
ond major subroutine is Orball, which handles integrating fast ion orbits until they are
neutralized, thermalized, or reach the end of the global time step. Orball is approximately
80% of the total run time. The other 5% of the run time is setup and recalculation of
the fields every global time step. Since Orball is 80% of the total run time, it will be the
first subroutine to be ported to the GPU.

2.1 Underlying Physics

The ORBALL subroutine handles the following physical operations:

• Ion drifts; vE, v∇B, vκ, vp

• Charge Exchange collisions ∂f
∂t
|cx = −f/τcx(v)

• Fokker-Planck collisions

• Anomalous diffusion

2.1.1 Ion drift equations

For ions in a magnetized plasma it is useful to use the components of the velocity perpen-
dicular and parallel to the magnetic field. Ions are free to move parallel to the magnetic
field, but are confined perpendicularly. Perpendicular movement is characterized by very
fast orbits about the magnetic field line. The radius of this orbit is the larmor radius
and the center of the orbit is the gyro-center. The net movement of the ion integrated
over many gyro-orbits can be characterized by the drift of the gyro-center. The velocity
of the gyro-center is given by the equations in figure 3.

vE =
E×B

B2
(1)

v∇B =
mv2

⊥
2qB

B×∇B
B2

(2)

vκ =
mv2

‖

qB

Rc ×B

R2
cB

(3)

vp =
m

qB
b̂

dvE
dt

(4)

Figure 3: Gyro-center drift equations [6].

The serial implementation of Nubeam
has two different schemes for integrating
the drift equations. The first uses a sin-
gle time step in magnetic coordinates, and
the second uses rk4 in Cartesian coordi-
nates. The rk4 method also has a time
step control that is based on the ion energy
balance over the course of the time step.
This feature is particularly useful because
it helps maintain roughly the same inte-
gration error when switching between dou-
ble and single precision. The fact that the
rk4 integrator is in Cartesian coordinates
allows for better use of texture memory.
Overall the rk4 integrator was determined
to be a better choice for the GPU implementation.

4

2.1.2 Charge Exchange collisions (CX-collisions)

Most particles will check for a charge exchange collision every time step, in which case
it is not a large performance hit to run the check kernel for every particle. However,
only a small subset of the particles will actually spawn neutral particles that need to be
tracked and redeposited or destroyed. Every time an ion crosses the midplane the code
roles the dice and determines how many steps after the midplane crossing are to pass
before checking for a cx collision. The first charge exchange kernel determines for every
particle whether or not a cx check needs to be done at this time step.

The next kernel, beamcx, calculates the total charge exchange cross section and the
probability of a charge exchange event. If a cx event occurs beamcx then calculates the
number of neutrals spawned as a function of the particles weight and the time since the
last charge exchange event. These neutrals then have to be passed off to another kernel,
nutrav in order to determine if and where they are re-ionized.

Generally very few particles actually spawn neutrals. This is a case where it is ad-
vantageous to split off this subset of the particle list, apply the nutrav operator on that
subset, and then merge the new ions with the main list. This can be accomplished with a
general GPU computing technique call stream compaction, which will be explained later
in this paper.

2.1.3 Fokker-Planck Collisions

Fokker-Planck collisions are collisions between two charged particles. For the purposes of
fast ion tracking these collisions result in pitch angle and velocity scattering. The average
change in these quantities is given by the following relationships:

〈∆v2〉 =
2δt

τs

(
Te
mb

+
v3
c

v3

Ti
mb

)
(5)

〈∆ζ2〉 = δtνii
(
1−−ζ2

0

)
(6)

The new velocity and pitch angle is then chosen from Gaussian distributions of width
〈∆v2〉 and 〈∆ζ2〉.[4]. Determining which particles are going to undergo fp collisions is
very similar to the method used to determine cx collisions. The main difference is that
in the current implementation particles undergoing fp collisions are not split off from the
main particle list.

2.1.4 Anomalous Diffusion

Anomalous Diffusion occurs in tandem with Fokker-Planck collisions. The anomalous
diffusivity is simply an externally set time varying radial profile. All fast ions that un-
dergo FP collisions and do not thermalize are passed to the anomalous diffusion operator,
which is in the same kernel as the FP collisions.[5]

5

2.2 General GPU Implementation Requirements

In order to support all of the underlying physics each particle must store 29 reals and 19
integers. A large amount of the underlying physics is dependent on the atomic species
of the particle, this means that the particle list should be multi-dimensional, the first
dimension is the particle species, the second is the particles index within that species list.
The serial implementation of nubeam allows for each particle to take a different number
of total time-steps, from about 5000 on average up to 15000. For the GPU code every
particle should take roughly the same number of time steps. If 80% of the particles finish
within 1/3 of the time steps a lot of GPU time is wasted.

On the mesh side there are a number of 2D fields that are frequently interpolated
using bi-cubic splines. Textures are excellent for these because textures are cached spa-
tially, which means that field data can be read in as few as 4 texture fetches, as opposed
to 8 for a regular array. Textures are used for field interpolation and coordinate system
mapping.

2.3 toyGPUPIC

Nubeam is a very complicated code, and as such it can be very difficult to test multi-
ple implementation methods. This is where a very simple particle-in-cell code comes in
handy. Particle-in-cell codes track particles on a grid and sum the charge and current
density profiles at every step. These density profiles are then used to recalculate the po-
tential mesh that moves the particles. The typical procedures of a PIC code are as follows:

1. Integrate the equations of motion.

2. Handle Collisions and reinjections.

3. Interpolation of charge and current sources to the field mesh.

4. Solve for Electric and Magnetic fields from the charge and current sources.

5. Interpolation of the fields from the mesh to the particle positions.

6. goto 1

Nubeam employs all of these steps save the field solve. Therefore a an efficient im-
plementation of a simple particle-in-cell code that excludes the field solve should be
representative of an efficient implementation of Nubeam. This simple PIC code referred
to as toyGPUPIC.

The toy PIC code uses a particle described by 6 floats and 1 integer. The 6 floats are
the 3-component position and velocity, and the integer is the binindex, which indicates
what sub-domain the particle resides in. The toyGPUPIC code consists of 5 basic steps:

1. Read the particle data

6

2. Read the Potential data for that particle

3. Move the particle

4. Write the new particle data back to the particle list

5. Update the density array

The code was run using 4.2 million particles on a 32x32x32 grid for 100 time-steps.
The execution times were recorded using NVIDIA’s Compute Visual Profiler as well as
calls to timer functions. This code served as a testbed for many of the implementation
considerations.

3 Implementation Considerations

The nature of GPU data access and execution control means that close attention must
be paid to data organization and execution paths. This section will discuss choices of
data structures, data ordering, and execution control.

The results of the profiling at each optimization step can be seen in table 1. The rest
of this section will discuss what changes were made at each optimization step and the
reasoning behind those changes.

3.0.1 Particle List Structure

The largest structure in the code is the particle list. A total of 19 integers and 29 reals
must be stored for every particle. The question here is whether to store the all the parti-
cles as an array of structures, or a structure of arrays. Two versions of the toyGPUPIC
code were implemented with the following particle data structures:

c l a s s XPchunk // Array o f S t ruc tu r e s
{
pub l i c :

f loat x , y , z , vx , vy , vz ;
} ;

c l a s s XParray // S t ruc tu re o f Arrays
{
pub l i c :

f loat ∗ x , y , z , vx , vy , vz ;
} ;

The kernel run times for the main components of each version of the code are shown
in table 1.

Essentially the run times for the structure of arrays are faster than the run times
for the array of structures. These results, and the significantly faster particle counting

7

Component SoA (ms) AoS (ms) Speedup (SoA vs AoS)
Particle data read,
move, and write

758 955 1.26x

Count Particles 32.7 109 3.35x
Data Reorder 346 480 1.38x
Total CPU run time 2491 3284 1.31x

Table 1: Execution times of main steps for Array of Structures and Structure of Arrays.
Count Particles and Data Reorder are steps used for a sorted particle list. Count Particles
counts the number of particles in each sub-domain. Data Reorder reorders the particle
list data after the binindex / particle ID pair have been sorted by the radix sort.

routine can be explained by how the GPU accesses global memory. When a thread in a
given warp wants to access data in global memory it sends a request to a warp scheduler
along with all the other threads in the warp. The warp scheduler then processes all of
the global memory accesses by fitting them into the minimum number of 128-byte cache
line reads needed to contain all of the memory addresses, call it n. The amount of data
read into cache is then 128n-bytes. This is fine if all of the threads are accessing data
that is sequentially addressed in memory, but when the size of the data type does not
fit well into the 128-byte cache line there is wasted bandwidth. Additionally, in the case
of the Count Particles function, each thread only requires 1 element of the particle data,
the binindex. The code for this kernel is shown in figure 3.0.1.

A particle list as a structure of arrays is always preferable to an array of structures,
especially when only a subset of the particle properties are required.

3.0.2 Data ordering

Data ordering is another very important part of a high performance GPU code. As
mentioned in the previous section, GPU memory accesses are made in 128-byte chunks.
If global memory accesses are not coalesced into the minimum number of 128-byte chunks
then precious memory bandwidth is wasted. However, coalesced memory access is not the
only thing that data organization can affect. Data ordering also has a significant impact
on what algorithms can be used. One example is the particle counting kernel shown in
figure 3.0.1. Counting the number of particles in a bin when the data has been sorted by
bin is very easy. If the particle list were unsorted then every bin might have to go through
the entire particle list, or a subset of the list. This would require the entire particle list
to be read from global memory multiple times. Another method is to have every particle
atomically update a counter for its own bin. Too many threads trying to update the same
counter simultaneously serializes the execution of the code, which defeats the purpose of
parallelizing it. With a sorted list the entire particle list has to be read only once. Since
the adjacent binindexs fall within the same cache-line, each particle only has to go to
the cache to get the index of the particle next to it. This can also be done with shared
memory, basically a user managed cache.

In order to test the impacts of data organization, sorting the particle list in particular,
several different organization methods were implemented.

As shown by table 2, the largest contribution to the run time of this implementation

8

g l o b a l
void c o u n t p a r t i c l e s (XPl i s t p a r t i c l e s , P a r t i c l e b i n ∗ bins)
{

int idx = threadIdx . x ;
int gidx = idx+blockIdx . x∗blockDim . x ;

int n p t c l s = p a r t i c l e s . n p t c l s ;

u int b in index ;
u int b i n i n d e x l e f t ;
u int b i n i n d e x r i g h t ;

i f ((gidx < nptc l s −1)&&(gidx > 0))
{

bin index = p a r t i c l e s . b in id [g idx] ;
b i n i n d e x l e f t = p a r t i c l e s . b in id [gidx −1] ;
b i n i n d e x r i g h t = p a r t i c l e s . b in id [g idx +1] ;

i f (b i n i n d e x l e f t != bin index)
{

bins [b in index] . i f i r s t p = gidx ;
b ins [b i n i n d e x l e f t] . i l a s t p = gidx−1;
b ins [b in index] . b in id = bin index ;

}

i f (b i n i n d e x r i g h t != bin index)
{

bins [b in index] . i l a s t p = gidx ;
b ins [b i n i n d e x r i g h t] . i f i r s t p = gidx +1;
b ins [b in index] . b in id = bin index ;

}

}

i f (gidx == 0)
{

bin index = p a r t i c l e s . b in id [g idx] ;
b ins [b in index] . i f i r s t p = gidx ;
b ins [b in index] . b in id = bin index ;

}
i f (gidx == nptc l s −1)
{

bin index = p a r t i c l e s . b in id [g idx] ;
b ins [b in index] . i l a s t p = gidx ;
b ins [b in index] . b in id = bin index ;

}
}

Figure 4: Count Particles Kernel. This kernel counts the number of particles in each bin
by having 1 thread per particle, then having each thread ask the thread next to it if their
particles belong in the same bin. If they do not belong in the same bin then that thread
knows it is the last or first particle in its bin.

9

Component Un-Optimized (ms) Sorted (ms) Sorted+Shared (ms)
Particle data read,
move, and write

375 375 468

Potential Grid Read 467 342 285
Density Update 1.143e4 1.004e4 542
Particle List Sort 0 2.305e3 2.305e3
Total 1.227e4 1.308e4 3600

Table 2: Total Execution times for 100 iterations of the key steps of the move kernel at
three different optimizations.

is the density array update. The time spent on the density array update constituted
about 93% of the total time spent on the move kernel. When implementing the move
algorithm in parallel, there will be multiple threads attempting to update the density
array simultaneously. Problems arise when one thread overwrites or ignores the density
array update of another thread. In order to ensure that all updates are done correctly, the
updates must be done atomically. This causes the code to become serial for the density
update, significantly reducing any speed up that would otherwise be gained. Therefore,
it is very important that these atomic operations be avoided and if possible replaced by
another method for updating the density array.

This is a thread communication problem, and one of the best places to look to for
answers to thread communication problems is shared memory. Shared memory is as fast
as registers if bank conflicts are minimized, and can be accessed by all threads in a given
thread-block. Since thread execution within a thread-block can be synchronized, safe
updates to shared memory can be ensured. The problem is that shared memory is rather
small, a measly 48kb for a single multi-processor, meaning that 48kb can be split between
multiple thread-blocks. Realistically this leaves about 16kb or so shared memory for a
thread-block at maximized sm occupancy.1 This means that if the grid is large then
it will not fit into shared memory, so shared memory can only be used if all particles
within the thread-block belong to a specific sub-domain. This means that a block level
domain-decomposition is required for fast density updates.

In toyGPUPIC this sub-domain is the size of a single cell, which means that the parti-
cles must be sorted by individual cell. This has both pros and cons. The positive effect is
that with only 8 nodes to update an 8x512 fits fine in shared memory, meaning that each
thread can read a particle and assign its weighted density to each of the nodes in its own
section of shared memory. Once all spots in the shared memory array have been filled, a
parallel reduction for each node can be done. Reductions on shared memory are very fast,
meaning that even though it is technically more computational complex, the fact that
it is done in parallel makes it worth it. An example of GPU reduction is shown in figure 5.

There are a few downsides to sorting by each individual cell. The first is non-uniform
particle distributions. If some cells contain significantly more particles than other cells,
then the code has to wait on those cells. Another issue is the sorting itself. Sorting by
individual cell for a 323 grid means that a radix sort[2] has to go through 15 bits. Smaller

1Each SM is limited by 1536 threads, 6 thread blocks, 48kb shared memory, or 32k 32-bit registers.

10

2011072-3-253-20-18110Values (shared memory)

0 2 4 6 8 10 12 14

22111179-3-558-2-2-17111Values

0 4 8 12

22111379-3458-26-17118Values

0 8

22111379-31758-26-17124Values

0

22111379-31758-26-17141Values

Thread
IDs

Step 1
Stride 1

Step 2
Stride 2

Step 3
Stride 4

Step 4
Stride 8

Thread
IDs

Thread
IDs

Thread
IDs

Figure 5: Parallel Reduction with interleaved addressing.[1]

cells also means that the ratio of surface area to volume is greater, which means that the
particle flux into and out of the cell is larger. Larger particle fluxes between cells means
that more particle data has to be moved around at each sort. The key to solving this
is a hybrid approach. Operations on shared memory are fast. Sorting ensures that all
particles within a group belong to the same sub-domain. Having a larger number of grid
elements per sub-domain means that reductions are not as viable, but what about shared
atomic operations? Atomic operations can serialize the code, but when they are done on
shared memory by a few hundred threads instead of a few million, they are significantly
less costly. This is the method that was used in the sceptic3D code.

3.0.3 Execution Control

The final implementation guideline concerns balancing a threads workload and the cost
of just launching it. This means that in some cases it is fine to treat each thread as an
ideal parallel processor that only performs a single task. However, if the workload is light,
it can be advantageous to treat each thread as a serial processor that does the work of
several threads. A prime example of this is the move kernel in sceptic3Dgpu. Tests were
run using 2 GPU runs of sceptic3Dmpi with 8 million particles per gpu and 20 time steps
per run. The number of particles per thread for the move kernel (padvnc) was varied
from 1 to 10. The results can be seen in figure 6.

4 Results

Detailed performance analysis of Nubeam is not available at this time. However, a pre-
liminary results are available. Detailed performance results of toyGPUPIC are available
and will be presented in the following section.

11

0 5 10 15
4

4.2

4.4

4.6

4.8

5

5.2

5.4

5.6

5.8

6

Number of Particles Per Thread

E
xe

cu
tio

n
T

im
e

(n
s)

64x64x64 Grid

Figure 6: Varying the number of particles each thread handles in the particle moving
kernel. This is for 2 gpus with 8 million particles per gpu on a 643 spherical grid. Note
how it is significantly faster to run multiple particles per thread. This is because the
work required to move 1 particle does not significantly outweigh the cost of launching the
thread.

4.1 Nubeam Results

So far only the orbit integration routines have been fully debugged. The charge-exchange,
Fokker-Planck, and anomalous diffusion routines have been implemented but are still
buggy. Results for just the orbit integration routines are as shown in table 3. Figure 7
shows what the particle movement and magnetic coordinate mesh in nubeam look like.

Number of Particles CPU time(s) GPU time(s)
100,000 662 48
200,000 1001 78

Table 3: Roughly 13x speedup for the orbit routine, or about 3x speedup for Nubeam as
a whole. This is for 1 CPU vs 1 GPU.

4.2 Performance of toyGPUPIC

The first performance measurements were done in a system parameters scan, which in-
volved varying the particle count and the grid size. The number of particles ranged from
1024 to 4.2 million. Two grid sizes were used for these scans, an 8x8x8 grid, and a

12

Figure 7: Visualization of fast ion orbits calculated by gpu Nubeam. Video can be found
here

16x16x16 grid. The hardware utilized was 1 NVIDIA GTX 470 video card. The GTX
470 has 1280MB global memory and 448 cuda cores. The computer’s CPU was an intel
i7 930 with a clock speed of 2.8 GHz. The time measured was the total execution time
for 100 iterations of a move kernel and all of its supporting kernels. The results of these
scans can be seen in figures 4.2 and 4.2.

The cpu comparison was run on the same hardware with 4.2 million particles on a
32x32x32 grid. The results can be seen in table 4. The completely un-optimized method
was 78 times faster than the CPU implementation. The first level of optimization involved
using the brute force method, but on a sorted particle list. Including the sorting time,
this implementation was 60 times faster than the CPU implementation. The second
level of optimization makes use of shared memory for the grid data and for updating the
density array. This implementation was 150 times faster than the CPU implementation,
including the sorting time, and the time for several support kernels.

13

"http://www.youtube.com/watch?v=Qd7niEMGbeU"

10
3

10
4

10
5

10
6

10
7

10
1

10
2

10
3

10
4

10
5

Number of Particles

E
x
e
c
u
ti
o
n
 T

im
e
 (

m
s
)

8x8x8 Grid

Sorted
Un-optimized
Sorted & Shared

Figure 8: System Scan on an 8x8x8 grid. Execution time is for 100 iterations including
the sort time and time to run several supporting kernels.

Method CPU Time (ms)
Un-optimized 9790
Sorted 12834
Sorted & Shared 5101
CPU 766302

Table 4: CPU and GPU run time comparisons. Times are for 100 iterations of 4.2 million
particles and a 32x32x32 grid.

5 Conclusions

GPUs are very well suited to particle tracking codes. While tracking the particles is
trivially parallel, getting meaningful information out of the tracked particles, such as the
distribution function, induced charge and current distributions, etc. is not. In order
to achieve high performance out of a particle tracking code it is recommended that the
following guidelines are taken into consideration:

• Particle list should be sorted spatially.

• Particle list should be a structure of arrays, not an array of structures.

• Depending on the complexity of the kernel, each thread should process multiple
particles in order to hide launch latency.

• Spatially organizing data is very important.

14

10
3

10
4

10
5

10
6

10
7

10
1

10
2

10
3

10
4

10
5

Number of Particles

E
x
e
c
u
ti
o
n
 T

im
e
 (

m
s
)

16x16x16 Grid

Sorted
Un-optimized
Sorted & Shared

Figure 9: System Scan on an 16x16x16 grid. Execution time is for 100 iterations including
the sort time and time to run several supporting kernels.

6 Code Sources

1. nubeam gpu code can be found at: https://github.com/spad12/GPU_Nubeam

2. nubeam gpu requires a working installation of nubeam, which can be found here:
http://w3.pppl.gov/ntcc/NUBEAM

3. toy PIC code can be found at: https://github.com/spad12/GPUPIC_testbed

4. sceptic3Dgpu code can be found here: https://github.com/spad12/sceptic3D/

tree/gpu

References

[1] Mark Harris, Optimizing Parallel Reduction in CUDA, http://developer.

download.nvidia.com/compute/cuda/1_1/Website/projects/reduction/doc/

reduction.pdf

15

https://github.com/spad12/GPU_Nubeam
http://w3.pppl.gov/ntcc/NUBEAM
https://github.com/spad12/GPUPIC_testbed
https://github.com/spad12/sceptic3D/tree/gpu
https://github.com/spad12/sceptic3D/tree/gpu
http://developer.download.nvidia.com/compute/cuda/1_1/Website/projects/reduction/doc/reduction.pdf
http://developer.download.nvidia.com/compute/cuda/1_1/Website/projects/reduction/doc/reduction.pdf
http://developer.download.nvidia.com/compute/cuda/1_1/Website/projects/reduction/doc/reduction.pdf

[2] Satish, N., Harris, M., and Garland, M. “Designing Efficient Sorting Algorithms
for Manycore GPUs”. In Proceedings of IEEE International Parallel & Distributed
Processing Symposium 2009 (IPDPS 2009).

[3] L. Patacchini; I. H. Hutchinson Fully self-consistent 3D modeling of spherical Mach-
probes in ExB fields. IEEE International Conference on Plasma Science, 2009.

[4] R. J. Goldston; D. C. McCune New Techniques for Calculating Heat and Particle
Source Rates due to Neutral Beam Injection in Axisymmetrix Tokamaks. Journal
of Computational Physics, 1981.

[5] Alexei Pankin; Douglas McCune; Robert Andre; Glenn Bateman; Arnold Kritz; The
tokamak Monte Carlo fast ion module NUBEAM in the National Transport Code
Collaboration library. Computer Physics Communications, 2004.

[6] J. Freidberg. Plasma Physics and Fusion Energy. Cambridge University Press, 2000.

[7] NVIDIA Corporation NVIDIA CUDA C Programming Guide. 5/6/2011.

16

	Introduction
	NUBEAM: Modeling Fast Ion Orbits
	Underlying Physics
	Ion drift equations
	Charge Exchange collisions (CX-collisions)
	Fokker-Planck Collisions
	Anomalous Diffusion

	General GPU Implementation Requirements
	toyGPUPIC

	Implementation Considerations
	Particle List Structure
	Data ordering
	Execution Control

	Results
	Nubeam Results
	Performance of toyGPUPIC

	Conclusions
	Code Sources
	References

