18.337 Jameson Nash
Project Report: N-Queens solver in Parallel as a CSP

[learned about Constraint Satisfaction Programming earlier in the semester,
and was very interested to see how it would perform if given more processors in
parallel. In particular, I was wondering whether I could achieve a linear, sub-linear,
or super-linear speedup. And at what point adding more processors would not
significantly help. I used the popular N-Queens puzzle to benchmark my approach,
while attempting to avoid adding unnecessary domain-specific information. Thus,
this implementation treats the solution as part of the NP-complete class of problems
and ignores some of the reductions that can be done -- including the O(1)
algorithmic solution to this puzzle, as well as some of the probabilistic methods that
at the cutting edge of current research approaches. I found that by distributing the
search effort across multiple processors, I could achieve a speed up to the first
discovered-solution time of a couple orders of magnitude in some cases.

The N-Queens puzzle is an extension of the 8-Queens puzzle proposed by
Max Bezzel in 1848. In the 8-Queens puzzle, the question is how to place 8 queens
on a standard 8x8 chess board such that no two queens are currently in a position to
attack another queen, given the standard chess rules allowing horizontal, vertical, or
diagonal movement by any number of squares. The N-Queens puzzle generalizes
that question to that of placing N queens on an NxN chessboard such that none of
them can attack another queen. The explicit algorithmic solution involves placing
the queens in a specific stair-stepping pattern. This is a pattern typically seen in
solutions found by an exhaustive solver. For the 8-Queens problem, there are 92

distinct solution or, if symmetrical solutions are counted together, 12 unique

Page 1

18.337 Jameson Nash
Project Report: N-Queens solver in Parallel as a CSP

solutions. The first solution found using the backtracking method is shown

pictorially below (image courtesy of Wikipedia):

4

The primary brute-force method of finding a single solution involves a
backtracking search. This is essentially a search of a depth-first tree. We use the
simple fact that only one queen can be place on a row to limit the domain to that of
finding a solution that places 1 queen in any column in each of the N rows such that
no queens are attacking. For every assignment at row n, we try every assignment at
row n+1. We keep placing queens at row n+1 until either n=N and a solution is
found - so we are done - or there is no possible assignment at that row n that does
not conflict with a queen placed previously - so we backtrack and try the next
assignment at row n. While this is exhaustive, it is also inefficient, exhibiting roughly
O(N!) growth. This means that while N=28 may be quickly solvable, N=32 can take a
while, and N=34 is severely impractical. One possible optimization that I looked at
was checking for possible assignment consistency ahead of time instead of when
placing the queen. This method is called backtracking with forward checking and it
can be used limit the number of times an invalid position is looked at, as the
algorithm recursively searches up and down the tree, at the cost of creating and

maintaining this list.

Page 2

18.337 Jameson Nash
Project Report: N-Queens solver in Parallel as a CSP

[felt this problem lent itself to the fairly obvious form of parallelism by
breaking up the entire problem tree and searching solutions on separate processors.
However, I also recognized that there are a fair number of solutions and
symmetrical placements. Therefore, simply assigning each processor a branch of the
search tree on the same level would be more likely to find the same solution many
times than to find a single unique solution more quickly. Thus I developed a simple
algorithm that divided the search space unevenly and quasi-randomly across all
processors. However, to ensure that all processors would eventually do about the
same amount of work, I only distribute a small portion of the problem at a time and
then select a new chunk to send to the next processor until some processor finds a
solution in its assigned search block. To keep the scheduler simple, I left all
consistency checking up to the processor assigned the work. To avoid giving one
processor too small of a workload relative to the other processors, I gave each
processor linearly more nodes at its base level as | moved down the search tree. So
for 4 processors, | would assign, at each increasing level, 1 then 4 then 8 then 16 (i.e.
all) branches to search. Below you can see the effect of this algorithm on the order in
which the processors returned from searching. The format gives the processor id
number then the search domain given to the processor. For this size problem, some
of the ordering was due to communication delays rather than actual work
differences, and three processes found the solution at the end before the

information that a solution was already found was propagated.

julia> searchSolutionParallel(N:=16, forwardChecking:=false)
3: Domains(2:1.2:1.16:..))
4: Domains(2:3:1.4:1.16:..)

Page 3

18.337 Jameson Nash
Project Report: N-Queens solver in Parallel as a CSP

5:Domains(2:3:5:1.8:1..16: ...)
3:Domains(2:3:5:9:1.16:...)

4: Domains(2:3:5:10..16:1..16: ...)
5:Domains(2:3:6.9:1..16: ...)
3:Domains(2:3:10:1..8:1..16:..))

4: Domains(2:3:10:9:1..16:...)
3:Domains(2:3:11..14:1..16: ...)

4: Domains(2:3:15:1.8:1..16: ...)
3:Domains(2:3:15:9:1..16: ..)

4: Domains(2:3:15:10..16:1..16: ...)
3:Domains(2:3:16:1..16: ...)

2: Domains(1:1..16: ...) found solution

3: Domains(2:6:1..4:1..16: ...) found solution
5: Domains(2:3:10:10..16:1..16: ...)

4: Domains(2:4..5:1..16: ...) found solution

The results exceeded my expectations, with a super-linear speed up for
sufficiently large problems, and sometime over an order of magnitude drop in
search time. The effect was much more pronounced for increasing values of N, since
slightly larger problems went from essentially unreachable to rapidly solvable with
only a modest number of additional processors. I believe that setup and
communications time are dominating for N<28, inhibiting noticeable results at those
problem sizes. The parallelism of the backtracking method was able to take
advantage of the multiple processors searching in parallel to achieve a speed up on
the overall problem. The following plots provide two views on the same data
showing the improvements achieved as more processors are added. In the first
graph, the fit lines are drawn by hand to guide the eye in clustering related data
points. It is useful to note that the parallelism appears to have decreased the slope of
the log-linear line, implying that the speed-up will be increasingly large for higher

values of N.

Page 4

18.337 Jameson Nash
Project Report: N-Queens solver in Parallel as a CSP

100000
10000 |

1000 |

@ Java
100 |
Hulia

Julia +3

Time (s)

#Julia +30

10
XJulia +116

40

0.1 7

Size of problem (N)

0.01 -

In the second graph, we observe the decreasing benefit from adding more

processors, for small values of N.

100000

Increasing numbers of parallel nodes
4

10000 0 0
Increasing time
to find solution

1000

Time (s)

100

10

single-thread parallel +3 parallel +30 parallel +70 parallel +116

Adding more processors appeared to have little effect on the speed of

solution, but did affect the largest problem that could be solved in a reasonable

Page 5

18.337
Project Report: N-Queens solver in Parallel as a CSP

Jameson Nash

amount of time, as can be seen in the following tabular form of the data (times given

in seconds):

single-thread | parallel +3 | parallel +30 | parallel +70 | parallel +116

N=38 infeasible | infeasible infeasible infeasible 401
37 infeasible | infeasible infeasible infeasible 292
36 infeasible | infeasible 50 49 44

35 1758 553 76 73 70
34 16099 694 56 55 24

33 1378 35 11 10 10
32 574 253 10 15 15
31 99 23 6 5 6
30 631 328 6 4 4

[suspect the limiting element is the efficiency with which I am dividing up
the work, but if [could know this in advance, [would presumably also have found a
way of making p=np!

As I wanted to make my implementation of forward-checking integrate
seamlessly with the backtracking and domain assignment, it does not store the
history information as efficiently as possible. The additional cost of performing the
forward-checking and maintaining the domain history appears to outweigh the
benefits of performing the early domain pruning. This is true when executed serially
on a single processor and was also true when searching in parallel. Part of the
additional disadvantage for the parallel case could be the fact that I didn’t prune the
domains on the head node. Thus all child nodes had to perform the same initial
work, some of which immediately invalidate the entire search domain, requiring
additional communication, which could have been avoided if the master node had
done more work initially. However, [had trouble handling the algorithmic
complexity of ensuring that all nodes are eventually searched combined with the

requirement of eliminating all future combinations that are not valid. However, |

Page 6

18.337 Jameson Nash
Project Report: N-Queens solver in Parallel as a CSP

also decided that the loss would likely be slight - given that each processor could be
performing this additional elimination step in parallel instead of upfront in serial.
Using a simple approach to dividing the problem into an absurdly parallel
search problem yielded sizeable benefits for reducing search time and increasing
the maximum locatable solution size. While we did not overcome the exponential
growth in time complexity, it does appear that the solution difficulty was greatly
reduced. Unfortunately, however, this does means it is still is far from being
competitive with the more advanced probabilistic solvers that are currently on the
cutting edge of research in this area. For the exhaustive approach for guaranteeing a
solution, the implemented parallelism resulted in some large reductions in search
time, without requiring the addition of domain-specific information, such as the
explicit solution or even that the domain of each row is shared (since only one

queen per column).

The code for this project can be obtained at:

https://bitbucket.org/vtjnash/jqueens/downloads

Page 7

