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Introduction
The problem of finding maximum indpenedent sets is important to many feilds. For the
purposes of my research it is important because with the maximum indepnedent set we can
do scheduling wireless ad-hoc networks [3].
Finding a maximum indpenedent set is useful to many applications including: social networks[4],
computational biology[5], additional network communications reserach [6] and circut design
[7].
Minty’s algorithm [1], with the correction made by Nakamura [2], is important becauase it
allows us to find a maximum indepenednet set in polynomial time. However, it only finds the
maximum stable set in polynomial time on claw free graphs. In general finding a maximum
independent set is NP hard and the added constraint is what allows the algorithm to run in
polynomial time.
What does it mean to be a claw free graph? It means that no subgraph forms a claw. A
subgraph of a graph is a graph formed by taking some subset of the origial nodes and ALL
of the edges between any nodes in that subset. A claw is one node connected to three others
where none of those three nodes share edges.

Here is an example of a graph with a claw (the nodes in the claw are in green):

Here is an example fo a graph without a claw:
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Minty’s Algorithm and Nakamura’s correction
A white node: A node not in the given independent set.
A black node: A node in the given independent set.
A free node: A white node connected to only one black node.
A super free node: A white node connnected no black nodes.

Scetch of Minty’s algorithm[1][2]:
If an indepenedent set is maximum then no augmenting path would exist. If a given inde-
pendent set is not a maximum then an augmenting path will exist.
Minty’s algorithm works on a macro scale by starting with an independent set of one node
and then finding augmenting paths. This process can be sped up by adding nodes until every
given set is maximal.
For a given augmenting path we add the white nodes into the indepenedent set and remove
the black nodes. We feed this new independent set of increased cardinality back in to get a
new independent set. The process stops when no more augmenting paths can be found.
If the input indpenedent set is I then we look at all nodes that could be end nodes for an
augmenting path. In this case this is white nodes that are connected to exactly one black
node.
For each pair of possible end nodes we remove ’useless’ nodes from the graph (as an example
white nodes adjacent to the end nodes chosen).
Next we partition the white nodes into two groups for the two black nodes they are adjacent
to (unless they are an end node in which case they are only adjacent to one black node).
Using the partitions we determine the irregular white augmenting paths (IWAPs) where an
irregular black node is only connected to two black nodes through its white nodes.
Using the IWAPs and the paths formed by white nodes create a graph where black nodes
are represented by edges and paths or white nodes are represented by edges.
Edmonds algorithm is called as a way to determine an augmenting path in this altered graph.

Serial vs Parallel in Theory
The serial version runs in O(n7)[8]. Minty’s algorithm has a step run O(n2) times where each
step takes O(n5).
If there are f(n) = O(n2) processors then we can improve the assamptotic running time of
the algorithm by f(n) that is to say the new running time will be O(n7/f(n)).
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Serial vs Parallel in Implementation (Results)
First I needed to determine the model by which I would produce random graphs. I use the
Erdos model of random graph formation and remove claws however the image on the right
shows what happens if you keep a constant probability: lots of claws form and the size of
maximum independent set is very small (cardinality 2). This means that on large graphs
the computationaly expensive task of Minty’s algorithm is only run once. In graphs we care
about the maximum indepnedent set grows as the graph grows. To model this we set the
probability for an edge to be 1/n where n is the cardinality of the graph. We see the time
computation takes on this model as n grows on the left:

It is intersting to note that the steps that are most compuationaly expensive are the graph
cleaning steps. The required communication for parallel algorithms I came up with were too
great to make this a useful task to parallelize. However, parallelizing these taks would be an
interesting direction for future work. Below is a graph of graph size (x) by time (y) of the
cleaning step:

Next I wanted to determine the practical growth of the number of trivially parallelizable
tasks. The following shows the average number of calls to the trivially parallized task that
could be done in parallel (the average number of tasks that could be done at one time in
parrallel).
x axis: size of graph
y axis: number of parallizable tasks on average
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As you can see from the graph there is in fact quite some room for improvement in par-
allelizing the tasks created by the diffrenet choices of possible start and end nodes of the
augmenting path.

If there were no communication cost and as many processors as desired then the follow-
ing graph shows the best possible time when trivailly parallelizing. In other words the pink
curve the theoretical ideal of how long the task will take in parallel and the blue curve is the
origional time for refrence.
x axis: size of graph
y axis: time

Next I wanted to see how increased numbers of processors affected the time that computa-
tion took. The follwoing has plots for the graph sizes: 20, 50 and 100.
y axis: computation time
x axis: processors/10
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Future Work
In order to use this alrogithm the graph must have no claws. So one area of future research
is developing good ways of removing claws from graphs (by adding or removing constraints)
such that the graph becomes claw free while keeping the size of the maximum independent
set as close to the actual size of the maximum independent set.
If you are conserned that graphs have too many claws to reasonably remove them: let me
assuage your concerns. As it turns out claws are strictly balanced. In Bolobas’ book Ran-
dom Graphs the properties of strictly balanaced sub-graphs are discussed. One particularly
important property (with numbers pluged in for the specific case of claws) is that if p = cn

−4
3

then limn→∞ E(X) = c3

6
. In other words the expected value of the number of claws in the

graph as n, the cardinality of the graph, heads to infinity is constant!
Parallelize the graph cleaning steps that are so expensive.
Another area for future research that is of interest if we are finding the maximum indepen-
dent set of the conflict graph of a wireless ad-hoc network. In that case the network that
would be running the algorithm would be related to (or perhaps even equal to) graph that
was being analyzed. It would be interesting to look into how the network architecture itself
could be leveraged to improve the speed of the algorithm.

Conclution
The problem of finding maximum independent set is important problem in many feilds. In
general this problem is NP-hard. However, if the graph contains no claws as subgraphs then
the problem is solvable in polynomial time.
When run in serial this problem is O(n7) where O(n2) of that time is due to trying every
possible set of end nodes. This means that Minty’s algorithm is trivially parallelizable. in
fact if we have O(n2) processors Minty’s algorithm only takes O(n5) time.
When run practicaly there is a speed up we get when increasing processors untill there are
no more tasks that can be run in parallel. There is a speed up despite the communication
cost. Due to the increase in the number of parallizable tasks as n increases the amount of
speed up for a given number of processors is depenedent on the size of the problem.
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