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• This project is not finished.



The project in a sentence.

Introduction

• First a disclaimer
• The project in a
sentence.

• Particle Filter
• Particle Filter
workings

Robot Localization
Application

Simple Example

Project

4 / 27

• Implement a particle filter in Julia that takes advantage of
distributed-memory parallelism.
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• An approximation to the general Bayes filter
• Track the state of a dynamical system

◦ but the state is not directly observable
◦ but the dynamical system is noisy

• Same concept as the Kalman filter, but fewer assumptions

◦ but the system dynamics may be non-linear
◦ the observation function may be non-linear
◦ the process noise and and observation noise may be

non-Gaussian
◦ the hypothesis is not confined to be Gaussian – can have

multimodal hypotheses
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1

1Taken from Probabilistic Robotics 2005
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• Implement a practical parallel particle filter for distributed
memory systems

◦ Bayesian Filtering libraries exist
◦ I didn’t find any for distributed memory systems.

• Maybe for a good reason...

• Create a framework general enough so that different
parameters of the particle filter can be tested

◦ plugging in different sampling techniques, noise
parameters, etc.

◦ benchmark computational performance and estimation
performance

• Provide a use case of Julia. Hopefully create an elegant
implementation that might attract others to the platform

◦ especially think about Monte Carlo Bayesian inference
folks
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