Parallel Particle Filter in Julia

Gustavo Goretkin

December 12, 2011

Introduction

- First a disclaimer
- The project in a sentence.
- Particle Filter
- Particle Filter workings

Robot Localization Application

Simple Example

Project

Introduction

First a disclaimer

Introduction

• First a disclaimer

• The project in a sentence.

• Particle Filter

• Particle Filter

workings

Robot Localization Application

Simple Example

Project

• This project is not finished.

The project in a sentence.

Introduction

- First a disclaimer
- The project in a sentence.
- Particle Filter
- Particle Filter

workings

Robot Localization Application

Simple Example

Project

• Implement a particle filter in Julia that takes advantage of distributed-memory parallelism.

Introduction

First a disclaimerThe project in a

sentence.

Particle Filter

• Particle Filter workings

Robot Localization Application

Simple Example

Project

• An approximation to the general Bayes filter

Introduction

- First a disclaimer
- The project in a sentence.
- Particle Filter
- Particle Filter workings

Robot Localization Application

Simple Example

- An approximation to the general Bayes filter
- Track the state of a dynamical system

Introduction

- First a disclaimer
- The project in a sentence.
- Particle Filter
- Particle Filter workings

Robot Localization Application

Simple Example

- An approximation to the general Bayes filter
- Track the state of a dynamical system
 - but the state is not directly observable
 - but the dynamical system is noisy

- First a disclaimer
- The project in a sentence.
- Particle Filter
- Particle Filter workings

Robot Localization Application

Simple Example

- An approximation to the general Bayes filter
- Track the state of a dynamical system
 - but the state is not directly observable
 - \circ $\,$ but the dynamical system is noisy
- Same concept as the Kalman filter, but fewer assumptions

Introduction

- First a disclaimer
- The project in a sentence.
- Particle Filter
- Particle Filter workings

Robot Localization Application

Simple Example

- An approximation to the general Bayes filter
- Track the state of a dynamical system
 - but the state is not directly observable
 - but the dynamical system is noisy
- Same concept as the Kalman filter, but fewer assumptions
 - but the system dynamics may be non-linear
 - the observation function may be non-linear
 - the process noise and and observation noise may be non-Gaussian
 - the hypothesis is not confined to be Gaussian can have multimodal hypotheses

Introduction

- First a disclaimer
- The project in a sentence.

• Particle Filter

• Particle Filter workings

Robot Localization Application

Simple Example

Project

1. Start with a set of *n* particles at step t_{n-1} . These particles represent the hypothesis at that time.

Introduction

First a disclaimerThe project in a

sentence.

Particle Filter

• Particle Filter workings

Robot Localization Application

Simple Example

- 1. Start with a set of *n* particles at step t_{n-1} . These particles represent the hypothesis at that time.
- 2. Propagate each particle independently according to system dynamics. This is the *a priori* hypothesis.

Introduction
First a disclaimerThe project in a
sentence.
 Particle Filter Particle Filter workings
Robot Localization

Simple Example

- 1. Start with a set of *n* particles at step t_{n-1} . These particles represent the hypothesis at that time.
- 2. Propagate each particle independently according to system dynamics. This is the *a priori* hypothesis.
- 3. Make an observation and weight each particle by the likelihood of the the particle -p (observation|particle)

Robot Localization Application

Simple Example

- 1. Start with a set of *n* particles at step t_{n-1} . These particles represent the hypothesis at that time.
- 2. Propagate each particle independently according to system dynamics. This is the *a priori* hypothesis.
- 3. Make an observation and weight each particle by the likelihood of the the particle -p (observation|particle)
- 4. Resample *n* particles according to their weights. This represents the *a posteriori* hypothesis at t_n .

Introduction

First a disclaimerThe project in a

sentence.

• Particle Filter

• Particle Filter workings

Robot Localization Application

Simple Example

- 1. Start with a set of *n* particles at step t_{n-1} . These particles represent the hypothesis at that time.
- 2. Propagate each particle independently according to system dynamics. This is the *a priori* hypothesis.
- 3. Make an observation and weight each particle by the likelihood of the the particle -p (observation|particle)
- 4. Resample *n* particles according to their weights. This represents the *a posteriori* hypothesis at t_n .
 - (a) many different resampling techniques with different computation complexities and variances.

Introduction

First a disclaimerThe project in a

sentence.

• Particle Filter

• Particle Filter workings

Robot Localization Application

Simple Example

- 1. Start with a set of *n* particles at step t_{n-1} . These particles represent the hypothesis at that time.
- 2. Propagate each particle independently according to system dynamics. This is the *a priori* hypothesis.
- 3. Make an observation and weight each particle by the likelihood of the the particle -p (observation|particle)
- 4. Resample *n* particles according to their weights. This represents the *a posteriori* hypothesis at t_n .
 - (a) many different resampling techniques with different computation complexities and variances.
 - (b) the part that is not embarrassingly parallel.

Introduction

First a disclaimerThe project in a

sentence.

• Particle Filter

• Particle Filter workings

Robot Localization Application

Simple Example

- 1. Start with a set of *n* particles at step t_{n-1} . These particles represent the hypothesis at that time.
- 2. Propagate each particle independently according to system dynamics. This is the *a priori* hypothesis.
- 3. Make an observation and weight each particle by the likelihood of the the particle -p (observation|particle)
- 4. Resample *n* particles according to their weights. This represents the *a posteriori* hypothesis at t_n .
 - (a) many different resampling techniques with different computation complexities and variances.
 - (b) the part that is not embarrassingly parallel.

Introduction

Robot Localization Application

- Robot Localization Application
- Robot Localization
 Application
- Robot Localization
 Application
- Robot Localization
 Application
- Robot Localization
 Application
- Robot Localization Application
- Robot Localization
 Application
- Robot Localization Application
- Robot Localization Application
- Robot Localization Application
- Robot Localization
 Application
- Robot Localization Application

Simple Example

Project

1

¹Taken from Probabilistic Robotics 2005

Introduction

Robot Localization Application

Simple Example

• Absolute Value observation n = 1000

• Square Value

observation n = 500

• Square Value

observation n = 500

Project

Simple Example

Absolute Value observation n = 1000

Square Value observation n = 500

Square Value observation n = 500

Introduction

Robot Localization Application

Simple Example

Project

- Goal of the project
- Current State of the Project
- Future Work

Introduction

Robot Localization Application

Simple Example

Project

• Goal of the project

• Current State of the Project

• Future Work

• Implement a practical parallel particle filter for distributed memory systems

Introduction

Robot Localization Application

Simple Example

- Goal of the project
- Current State of the Project
- Future Work

- Implement a practical parallel particle filter for distributed memory systems
 - Bayesian Filtering libraries exist

Introduction

Robot Localization Application

Simple Example

- Goal of the project
- Current State of the Project
- Future Work

- Implement a practical parallel particle filter for distributed memory systems
 - Bayesian Filtering libraries exist
 - I didn't find any for distributed memory systems.

Introduction

Robot Localization Application

Simple Example

- Goal of the project
- Current State of the Project
- Future Work

- Implement a practical parallel particle filter for distributed memory systems
 - Bayesian Filtering libraries exist
 - I didn't find any for distributed memory systems.
 - Maybe for a good reason...

Introduction

Robot Localization Application

Simple Example

- Goal of the project
- Current State of the Project
- Future Work

- Implement a practical parallel particle filter for distributed memory systems
 - Bayesian Filtering libraries exist
 - I didn't find any for distributed memory systems.
 - Maybe for a good reason...
- Create a framework general enough so that different parameters of the particle filter can be tested
 - plugging in different sampling techniques, noise parameters, etc.

Introduction

Robot Localization Application

Simple Example

- Goal of the project
- Current State of the Project
- Future Work

- Implement a practical parallel particle filter for distributed memory systems
 - Bayesian Filtering libraries exist
 - I didn't find any for distributed memory systems.
 - Maybe for a good reason...
- Create a framework general enough so that different parameters of the particle filter can be tested
 - plugging in different sampling techniques, noise parameters, etc.
 - benchmark computational performance and estimation performance

Introduction

Robot Localization Application

Simple Example

- Goal of the project
- Current State of the Project
- Future Work

- Implement a practical parallel particle filter for distributed memory systems
 - Bayesian Filtering libraries exist
 - I didn't find any for distributed memory systems.
 - Maybe for a good reason...
- Create a framework general enough so that different parameters of the particle filter can be tested
 - plugging in different sampling techniques, noise parameters, etc.
 - benchmark computational performance and estimation performance
- Provide a use case of Julia. Hopefully create an elegant implementation that might attract others to the platform
 - especially think about Monte Carlo Bayesian inference 25 / 27

Introduction

Robot Localization Application

Simple Example

Project

• Goal of the project

• Current State of the Project

• Future Work

• Implementation still pending. I'm still learning Julia.

Introduction

Robot Localization Application

Simple Example

- Goal of the project
- Current State of the Project
- Future Work

- Implementation still pending. I'm still learning Julia.SIMD approach.
 - Each compute node starts with a balanced set of particles.
 - The state propagation and observation functions happen independently on each machine.
 - After an independent resampling step, particles will likely be unbalanced.

Introduction

Robot Localization Application

Simple Example

- Goal of the project
- Current State of the Project
- Future Work

- Implementation still pending. I'm still learning Julia.SIMD approach.
 - Each compute node starts with a balanced set of particles.
 - The state propagation and observation functions happen independently on each machine.
 - After an independent resampling step, particles will likely be unbalanced.
 - Balancing between the two largest offenders

Introduction

Robot Localization Application

Simple Example

- Goal of the project
- Current State of the Project
- Future Work

- Implementation still pending. I'm still learning Julia.SIMD approach.
 - Each compute node starts with a balanced set of particles.
 - The state propagation and observation functions happen independently on each machine.
 - After an independent resampling step, particles will likely be unbalanced.
 - Balancing between the two largest offenders
- DArray primitives implemented
 - argmin, argmax, cumsum

Introduction

Robot Localization Application

Simple Example

- Goal of the project
- Current State of the Project
- Future Work

- Implementation still pending. I'm still learning Julia.SIMD approach.
 - Each compute node starts with a balanced set of particles.
 - The state propagation and observation functions happen independently on each machine.
 - After an independent resampling step, particles will likely be unbalanced.
 - Balancing between the two largest offenders
- DArray primitives implemented
 - argmin, argmax, cumsum
- Other primitives
 - binary search, independent sampling, redistribution

Introduction

Robot Localization Application

Simple Example

- Goal of the project
- Current State of the Project
- Future Work

- Implementation still pending. I'm still learning Julia.SIMD approach.
 - Each compute node starts with a balanced set of particles.
 - The state propagation and observation functions happen independently on each machine.
 - After an independent resampling step, particles will likely be unbalanced.
 - Balancing between the two largest offenders
- DArray primitives implemented
 - argmin, argmax, cumsum
- Other primitives
 - binary search, independent sampling, redistribution

Introduction

Robot Localization Application

Simple Example

Project

Goal of the project

• Current State of the Project

• Future Work

- Consider other rebalancing approaches
 - solving a minimum-cost graph flow problem to rebalance particles

Introduction

Robot Localization Application

Simple Example

Project

Goal of the project

• Current State of the Project

• Future Work

- Consider other rebalancing approaches
 - solving a minimum-cost graph flow problem to rebalance particles
- Think about memory allocation minimize memory allocation per iteration.

Introduction

Robot Localization Application

Simple Example

- Goal of the project
- Current State of the Project
- Future Work

- Consider other rebalancing approaches
 - solving a minimum-cost graph flow problem to rebalance particles
- Think about memory allocation minimize memory allocation per iteration.
- Think differently about parallelism. I'm stuck in the MPI mentality probably not exploiting DArrays enough.

Introduction

Robot Localization Application

Simple Example

- Goal of the project
- Current State of the Project
- Future Work

- Consider other rebalancing approaches
 - solving a minimum-cost graph flow problem to rebalance particles
- Think about memory allocation minimize memory allocation per iteration.
- Think differently about parallelism. I'm stuck in the MPI mentality probably not exploiting DArrays enough.