
A Graphical Front End for the Julia
Programming Language

Stephan Boyer

December 2011

1



1 Introduction

In order to compete in the landscape of numerical and parallel computing,
the Julia Programming Language1 should be easy to use and include plotting
functionality. Mathematicians and scientists who are not familiar with SSH
and related utilities will find it difficult to command an array of nodes in a
computing cluster in the traditional manner.

This paper introduces a web-based front end for Julia, which includes a
read–evaluate–print loop (REPL) and basic plotting functionality. There are
a number of reasons to use a web-based front end:

1. Users do not need to be familiar with UNIX utilities and shell scripting
to use Julia on a computing cluster.

2. Users do not need to install special software to use Julia—a web browser
is all that is needed.

3. Modern web technologies and standards, such as HTML5, Scalable Vec-
tor Graphics (SVG), and AJAX provide a rich platform for generating
interactive plots and graphical user interfaces.

4. A front end based on web technologies does not require an Internet
connection—the system can always be run locally.

5. A web interface allows for a new social component to numerical and
parallel computing. For example, several users could share an interac-
tive Julia session, or collaboratively edit a Julia program.

2 The Implementation

The current implementation consists of the lighttpd web server, a custom
SCGI-based session manager, and a backend written in Julia. Together,
these components provide a web-based read–evaluate–print loop (REPL), as
shown on the title page. This figure also demonstrates the system’s plotting
capability. The following features are supported:

1. Can plot functions, 1-D arrays, or arrays of points for any numeric
type.

1http://julialang.org/

2



2. Can automatically determine window dimensions, or you can specify
that manually.

3. When domain and range are similar, window is chosen to preserve
aspect ratio.

4. Picks tick marks intelligently.

5. When plotting a function with a limited domain (e.g. sqrt), undefined
output is ignored.

6. Full error checking.

7. Extensible interface allows us to add more types of plots easily.

8. Supported browsers include Firefox, Chrome, Safari, and IE9.

9. Plots are ”print safe” and ”resolution independent” (thanks to SVG
graphics).

10. More aesthetic than MATLAB and Mathematica plots (full anti-aliasing
of text and lines).

3 Plotting Examples

1. plot(sin, -pi, pi)

2. plot(cos(-pi:0.01:pi), sin(-pi:0.01:pi))

3. plot([0.0, 0.1, 0.4, 0.3, 0.4])

4 Plotting Limitations

The plotting functionality is currently limited in the following ways:

1. No zooming or interacting with plots

2. No way to export plots

3. Only one type of plot (line graph)

3



4. Graphics only available in web interface

5. Can’t plot multiple curves on same image

6. No titles/labels

Each of these limitations will be overcome in future versions.

5 Acknowledgement

I want to extend a special thanks to Professor Alan Edelman, Jeff Bezanson,
Viral Shah, Stefan Karpinski , and everyone involved with the Julia project.
Without them and their hard work, proprietary software might continue to
dominate the field of numerical computing.

4


