
Parallelizing SAT Solver

6.338 Applied Parallel Computing
Hank Huang

5/13/2009



What is SAT?

 The SAT problem:

 Given a formula made of boolean
variables and operators, find an 
assignment to the variables that makes it 
true:
◦ i.e. (P v Q) ^ (~P v R)

◦ A solution: {P = false, Q = true, R = false}

 SAT is NP-Complete (Hard)



SAT Solver

 Conjunctive Normal Form is a set of 
clauses, each containing a set of literals

 Clauses are “Anded” with one another

 Literals are “Ored” with one another in a 
clause

 An efficient SAT solver takes a formula in 
CNF and returns an assignment as 
solution or says none exists



More on SAT Solver

 Naïve Solve:
◦ Enumerate assignments and check formula for 
each assignment

◦ For k variables, 2^k assignments!

 DPLL/Davis-Putnam-Logemann-Loveland
◦ Back-tracking

◦ Unit propagation

◦ Pure literal elimination



DPLL Algorithm

 function DPLL(Φ, Env):
◦ if Φ is empty
 return Env;

◦ if Φ contains an empty clause
 return null;

◦ for every unit clause l in Φ
 Φ=unit-propagate(Φ,Env);

◦ for every literal l that occurs pure in Φ
 Φ=pure-literal-assign(l, Φ, Env);

◦ l := choose-literal(Φ);
◦ Env2 = DPLL(Φ,assign(l, Env));
◦ If Env2 is null
 return DPLL(Φ,assign(not(l), Env));

◦ return Env2

 Env is a map of assignments



Sudoku Puzzle



Sudoku Puzzle

 Rules of the game
◦ No two same digit can appear in a single 
column

◦ No two same digit can appear in a single row

◦ No two same digit can appear in a single sub-
grid

◦ Exactly one number must occupy each cell



Reduction

 For each column, row, sub-grid, cell:
◦ An At-least clause

◦ An At-most clause

◦ Together enforces exactly once behavior

 Example:
◦ An At-Least clause: [119 129 139 149 159 169 179 189 199]. 

◦ An associated series of At-Most clause:

◦ [-119 -129], [-119 -139], [-119 -149]…[-119 -199]

◦ [-129 -139],[-129 -139]…[-129 -199]

◦ …

◦ [-189 -199]

◦ These 37 clauses together ensure that “9” appears exactly once in row 
1.



Operations

 Unit Propagation:
◦ (X)(X v Y v Z)(~X v Y)(Y Z ~W) (~Z W) 
(Y)(Y Z ~W)(~Z W)

◦ (Y)(Y Z ~W)(~Z W)  (~Z W)

◦ Recursively searches the problem for a unit 
clause then simplify the problem accordingly in 
serial

 Pure Literal Elimination
◦ Tracks whether a literal has become pure at 
each step of recursion

◦ If so, simplify the problem accordingly



Parallelization

 Spread the problem across nodes

 Have each operations performed on sub-
problem in parallel

 Obtain new sub-problem, and recurse



Performance

Performance Comparison:

Java Matlab Serial Matlab Star-P

1 145 76 89 4105

2 219 88 101 3809

3 732 148 168 5672

4 2644 465 481 12691

5 4052 858 912 19780

6 8234 1485 1674 24536

Puzzle 

Number

Number of 

Recursion Steps

Performance in milliseconds



Conclusion

 Sudoku is too small, too easy
◦ Computation requires is light

◦ Does not justify for communication cost

 Bigger problem more likely to see benefits 
of parallelization


