
Searching Oracle Text Index with
Dynamic Parallel Query

By Igor Geller

Overview

The project is done in collaboration with Or-
acle database groups

The project aims to improve the processing
speed of Oracle Text Queries on Oracle
Database

The improvement from performance will
come from parallelization

Background

 Oracle Text Index is sorted by tokens
 For every word, a query returns a row with

compressed list of docids containing the
given word and their offsets

 For every match, it calculates the relevance
function and returns the results sorted by
relevance

 As of now only one slave is processing one
table

Description

 A typical Oracle Text query looks like:
select avg(story_seq_num), count(*) from t_stories where
CONTAINS(search_entitlements, 'Harvard')>0;
where search_entitlements is a set of columns we are searching
through.

 Adding parallel functionality enables the fol-
lowing command:
select /*+ parallel */ avg(story_seq_num), count(*) from
t_stories where CONTAINS(search_entitlements, 'Harvard')>0;
this command will spawn multiple slaves that will each call the
same function passing a unique number as their slave_id num-
ber.

Implementation

For this prototype I was hijacking the parti-
tioned table's parallel slaves in order to
achieve parallelism

 After spawning parallel slaves in different
partitions, I re-directed them to partition
number one that contained all the data

 The workload split was decided based on
rowid ranges

 Many additional checks to make sure noth-
ing is changed for the serial case

Testing

 Basic testing for correctness was done on a
small test-case and did not show any
benchmark improvement (in fact showed
some delay)

 Benchmark done on the extensive table
with 300,000 articles showed an improve-
ment from about 5.5 seconds to 3.5
seconds when parallelism of 4 was used

Problems

 Since the spawning of parallel slaves was
not implemented by the Oracle Parallel
Query Database, the prototype was created
by hacking into the code rather than prop-
erly implementing the functionality

 The observed improvement was not as
good as was hoped for indicating that there
might be a redundant overhead introduced

Conclusion

 The project will be continued in the summer
in order to achieve the goal of a proper effi-
cient implementation

 Working on the project helped me familiar-
ize with the Oracle Text Group code which
will be very useful when I start working

 Taking Parallel Computing class was a
great help and inspiration for me to apply
the learned theory directly to industrial prac-
tice.

	Title
	Slide 2
	Fulfilling Customer Needs
	Long-term Goal
	Customer Wishes
	Cost Analysis
	Strengths and Advantages
	Next Steps of Action

