
Progress Towards a More Efficient
Initialization for Discontinuous
Galerkin FE Codes Based on

Interface Elements

Andrew Seagraves
18.337 Final Project

My Parallel DG Code

 Computes the solution to non-linear elasticity
problems allowing discontinuous displacement
jumps at all the interelement boundaries

 This requires a completely discontinuous mesh
where no elements are connected to any other
elements

 It also requires the insertion of interface
elements between the discontinuous volume
elements

Interface Elements

 Interface elements
are surface
elements which live
on either side of an
element facet as
shown ------------->

Background on the Current DG
Code

 Interface elements must be inserted at all
interior facets in the serial case with the
boundaries ignored

 Interface elements must be inserted at all
interior facets in each processor and also at the
processor boundaries in the parallel case

 The solver requires that the processor
boundary interface elements live only in
processors with lower processor Id

DG Parallel Initialization – 6 Basic
Steps

• Starting from a partitioned CG (i.e. fully
connected) mesh

• 1. Break up the mesh in all the processors
introducing new nodes to each element.
Recreate the nodal connectivity of the elements
with the newly assigned local node Ids.

• 2. Renumber the global Ids of all the nodes
across the processors.

DG Parallel Initialization – 6 Basic
Steps cont.

• 3. Insert the interface elements at all interior
facets in each processor.

• 4. Insert the interface elements at all boundary
facets which live in a neighboring processor
with a higher processor Id. This requires the
creation of new nodes in this processor which
also exist in the neighboring processor.

• 5. Transfer the global Ids from the neighboring
processor to label these newly created
processor boundary nodes.

DG Parallel Initialization – 6 Basic
Steps cont.

• 6. Recreate the C++ object called the
Communication Maps in each processor

Schematic of Parallel DG Initialization

Communication Maps C++ Object

 A container defined in each processor which
holds a set of lists of the local node Ids of the
nodes which live in other processors.

 Each neighboring processor contains a
matching list with the same “ordering” but its
own local Ids

 These Communication Map structures allow for
send and receive buffers to be communicated
automatically between neighboring processors
during the calculation which contain information
concerning the shared boundary nodes

 In the DG initialization, the old Communication
Maps which are created for the CG mesh are
no longer valid to describe the DG mesh

 These Maps must be reconstructed in each
processor to reflect the local Ids of the newly
shared boundary nodes.

 Although they must be reconstructed in the last
step, I still make use of the old Communication
Maps to do the parallel DG initialization!

Communication Maps C++ Object

Winged Facet C++ Object
 A C++ object created in each processor for the

CG initialization which serves as a data
structure to define each facet within the
processor

 This structure points to the two adjacent
tetrahedra to the facet if internal, and to the one
adjacent tetrahedra if external

 This structure also stores the six old node Ids
belonging to each facet in the original CG mesh

 This structure is critical for the parallel DG
initialization!

Notes On The Old Parallel DG
Initialization

 Based on adaptive algorithm which was designed
originally to insert interface elements at arbitrary
element facets within the domain dynamically
during the calculation

 Extremely costly data structures are utilized by the
algorithm which we do not need

 The algorithm does everything in an incremental
fashion when this is unnecessary

 Hence it is extremely slow!

A New Serial DG Initialization
Algorithm

 Developed by my advisor.

 Uses only the original Winged Facets, and CG
mesh information (thus avoiding the creation and
usage of unnecessary, and costly data
structures) to

− 1. Break up the mesh inside of a single processor,
creating the new connectivity array from scratch

− 2. Insert the interface elements at each interior facet
inside of the processor

● This algorithm is orders of magnitude faster than
the original algorithm on a single processor

Extending the Serial Algorithm to
the Parallel Case

 The main idea of this serial algorithm is that it
uses the minimum amount of information
required to initialize the mesh.

 Keeping with this paradigm, I tried to directly
extend this algorithm to the parallel case using
only the information available after the CG
partitioning

 I found that by utilizing the old Communication
Maps, I was able to extend this algorithm to
insert the interface elements at the processor
boundaries (i.e. step 4)

Successes In Extending the Serial
Algorithm to the Parallel Case

 I modified my advisor's serial algorithm to also
insert the interface elements at the appropriate
facets on the processor boundary which live in a
neighboring processor with a higher Id (step 4)

 This is done by searching for the 6 old node
numbers of the boundary Winged Facets in each
of the old Communication Maps for processors
with higher Id

 If these node numbers are all located in one of
these Communication Maps, then an interface
element is created at that boundary facet

Difficulties in Extending the Serial
Algorithm to the Parallel Case

 Although I was able to extend the serial
algorithm to complete step 4 of the parallel
initialization in a straightforward manner, I soon
ran into a huge hurdle presented by the
following paradox:

− Starting with my implementation for completing
steps (1-4) in the parallel initialization, step (5)
cannot be completed easily without step (6) while
step (6) cannot be easily completed with doing step
(5)

 This paradox can be restated simply as:
− The newly recreated Communication Maps are

required to transfer the global Ids between
processors, while on the other hand the global Ids
must have been transferred already to recreate the
Communication Maps in any straightforward
manner.

Difficulties in Extending the Serial
Algorithm to the Parallel Case

A Possible Solution
 In each processor, all of the coordinates for the nodes of

each boundary facet living in a lower rank partition must be
assembled into arrays which are sent to the lower partitions

 The lower partitions must receive these arrays and then
match their new local boundary nodes to the coordinate
sets sent in this buffer

 The global Ids of these nodes must also be assembled into
arrays with the same ordering as the coordinates and sent
to the lower rank processors

 The lower rank processors can then match each of their
new local nodes to the corresponding global Id in the
receive buffer thus completing step (5)

 Given step (5), the global Ids can be used to recreate the
Communication Maps in each processor

Issues With This Approach

 There will be a cost incurred in assembling the
send and receive buffers and in passing the
messages

 Probably worse, the nodes will have to be
matched in the lower rank processor using
coordinate searches which are notoriously slow

 The implementation of this algorithm is also not
so easy to do since it requires a lot of
coordinated message passing

Conclusions and Future Work
 I was able to successfully extend my advisor's serial

algorithm to complete step 4 of the parallel case without
using any additional information available after the CG
partitioning step

 While my implementation should be fast at completing
steps (1-4), the further extension of this algorithm to
complete steps 5 and 6 is not straightforward

 It may unavoidably require coordinate searches within the
processors as I have envisioned

 My next step in developing the parallel initialization is to
determine conclusively if it is indeed necessary to do these
coordinate searches

 This will probably determine whether or not I continue
developing this specific algorithm, or whether I will go back
to the drawing board

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

