
Monte Carlo Go on 
NVIDIA GPU
Zachary Clifford



Overview of Go
• Go is a game about capturing 

territory

• Final score under Chinese 
scoring is number of stones 
on board plus number of 
spaces surrounded.  Black has 
13 and White has 12.

• Groups of stones are 
removed if they have no free 
spaces adjacent to them.  
Here black playing at (1) has 
captured white.  Capturing 
larger groups is also possible



Algorithm Overview

• Monte Carlo methods assume that a random sampling of a space are 
representative of that space.

• In this case, consider each possible move and randomly sample games 
resulting from that move.  Play out games to completion with both players 
playing a very simple random strategy.

• Hope that a move that leads to higher scoring games is a strong move.

• On a 9x9 Go board, there are a number of possibilities roughly equal to the 
number of remaining open spaces factorial.

• In practice, this means that only a really small subset of possible games can 
be sampled.



Implementation
• This implementation uses NVIDIA CUDA to parallelize the playing of 

random games.

• The GPU kernel takes as input a board state, active player, and chosen move.

• It then plays out 128 games to completion in parallel.  In addition, each 
position on the 9x9 grid is evaluated in parallel within each game.

• It proceeds through different steps identifying groups, identifying free spaces 
around groups, marking valid moves, making a move, and finally killing dead 
stones.  This proceeds on each of the 128 games until no player has valid 
moves.

• Finally a prefix sum kernel computes the average output score of that move.

• This is done for each possibility, and the highest scoring move is chosen.



Performance
• This engine was integrated with GNU 

Go, an open source Go engine.

• This modified GNU Go was played 
against a stock GNU Go player to test 
for speed and strength.

• In this example game the CUDA player, 
White, lost.  This is representative of its 
strength compared to GNU Go.

• GNU Go never takes more than a 
second or two to decide on a move.

• CUDA Go can evaluate a possible move 
in 1/4 second, but considering an entire 
board can take 20 seconds because it has 
no strategy for discarding obviously bad 
moves.



Evaluation
• Strength was low because of limited sample size.  To gather a representative sample many more games 

would need to be played.  The delay in performing this computation became prohibitive.

• Other Monte Carlo Go codes use a directed search.  They use Monte Carlo to decide between 
moves that another algorithm already declared as a strong move.  Implementing that in parallel was 
beyond the scope of this project.

• Truly random play is easiest to implement but not representative of actual good play.  For example, 
random players may happen to create defended groups, but they will probably be unable to organize 
an assault on a pre-existing group.  This biases the algorithm towards a “turtle” strategy.

• This problem does not map well to the CUDA architecture.  CUDA excels in problems with high 
arithmetic intensity and relatively little memory movement.  As a SIMD architecture it handles 
conditional branching and memory movement exceptionally badly.  It is forced to serialize operations 
that take different execution paths.

• Although each play out is embarrassingly parallel, the locations on a board are tightly coupled.  Some 
positions have stones while others do not.  Positions can freely move between occupied and not 
occupied.  This severely limits parallelism within a game, but CUDA requires such granular parallelism 
for good performance.



Future Work

• This algorithm runs more slowly on a GPU than an equivalent algorithm on 
a CPU.  The GPU is inherently slower at memory movement and logical 
operations than the CPU, but for other problems it leverages massive 
parallelism.

• The GPU could be used asynchronously in addition to the CPU to offload 
some game processing, but the AI would have to remain local to the CPU.

• If the CPU AI routine had an operation to evaluate a board that involved 
little decision making and many FLOPs, the GPU could accelerate that.

• The GPU could also aid in evaluating a board position to assist a human 
player.


