Real Time Visual Mapping and Localization on a GPU

18.337 Spring 2009
Brent Tweddle
tweddle@mit.edu

Introduction:

Autonomous robotics is concerned with designing robotic vehicles that can detect their
environment and react to it in real-time, in the same way a human would. The vehicles entered in
the DARPA Urban Challenge currently represent the state of the art in autonomous mobile
robotics. In this competition, autonomous cars drove in a real urban environment along side other
human drivers and robotic cars. Most of the cars successfully navigated the roads, and fully
complied with California driving laws. MIT’s entry to the Urban Challenge is pictured below.

In order to drive autonomously, a car must do three things: navigation, path planning and control.
Navigation is the process of estimating the location of the vehicle and mapping the environment
around it. Path planning is the act of determining a traversable route through the environment
from the vehicles current location to a goal. Control is the act of applying the actuator forces to
move the vehicle. In this project [will focus exclusively on a subset of the navigation problem.

Computational Requirements of Localization and Mapping:

The only available information to the car comes from 5 cameras,12 single axis lidars, 1 rotating
lidar and 15 radars (the sensor data is shown in the figure below). In the localization and mapping
problem, GPS positioning is assumed to be unavailable, which commonly occurs in a variety of
robotic applications including underground, outdoor and outer space environments.

As you can imagine, there is a lot of data that must be computed to generate a map and accurately
local the vehicle in a complex 3D environment. The MIT Urban Challenge vehicle used a 10 Blade
Server Cluster where each computer is a Quad-Core 2.3 GHz Xeon processor. This required a total
power consumption of 4000 Watts, which required an additionally generator and air conditioner
to be installed in the vehicle.

The Need for Power Efficient Implementations:

For many applications, especially aerospace, these mass and power requirements are simply not
feasible. For example, the MIT SPHERES satellites (see below) are currently on the International
Space Station. If these types of satellites were to employ the types of algorithms that were used on
the DARPA Urban Challenge vehicle, they would need much more power efficient
implementations.

The (typically aerospace) requirement to minimize the power consumption of complex artificial
intelligent algorithms causes aerospace robotics engineers to look for power efficient hardware
accelerators. This type of requirement has driven significant research on FPGA based computer
vision [1]. However, given the complexity of a VHDL/Verilog computer vision implementation,
these technologies were not considered for this project. An important figure of merit for selecting
a hardware acceleration method is the Watts per GFLOP. The table below shows this metric for a
number of common hardware platforms (note that FPGA’s are not included since they do not have

a well defined GFLOPS). It is important to note, that this is the theoretical peak GFLOPS and
maximum thermal design power (TDP). In order to properly compare apples to apples, the same
algorithm must be implemented on all platforms and measurements of both power and real world
GFLOPS must be taken. Since this process is definitely too time consuming, I will use the Watts per
GFLOP as a metric to select a processor architecture and compare my actual GFLOPS with the
theoretical peak GFLOPS.

Processor Theoretical Peak Watts per GFLOPS
GFLOPS

Quad “Bloomfield” 25.6 GFLOPS 130 W 5.078
Xeon 3.2 GHz

Core 2 Duo 20.2 GFLOPS 25W 0.810
“Penryn” 2.53 GHz

Cell Processor 152 GFLOPS 80 W 0.526
NVIDIA Tesla C870 518 GFLOPS 170 W 0.328
NVIDIA GeForce 504 GFLOPS 105 W 0.208
9800 GT

NVIDIA GeForce 240 GFLOPS 35W 0.145
8800M GTS

Since the GPU’s claim to deliver better GFLOPS/Watt by an order of magnitude, it is worthwhile to
determine whether they can be used.

Introduction to Graphics Processing Units and CUDA

Graphics processing units were originally designed to accelerate 3D video games and graphics
applications using libraries such as OpenGL or DirectX. These are intrinsically data parallel
operations, and hence GPU’s have been designed with a large number of parallel algorithmic units,
and very little control logic or on-chip cache (see figures below). This tradeoff means that very
high GFLOPS are achievable, but at the expense of a much more difficult programming
environment. Recently the CUDA programming environment has been released which allows the
user to program NVIDIA GPU’s in a restricted version of C. Much more details are available on
CUDA, however it is important to realize that in order to obtain the maximum performance,
memory, registers and parallel threads must be managed and fine-tuned by hand.

-
Ay ALY B L *»
Controd el TP Gox
AU M B s
— - Ultrs
- = r
= ;] —r ¥
- E >
- GT1
:
G0
L N . 3268
. NV e P iy » 5.0 GHz Harpertown
Jan Jun Apr Jun Mar Mov May dun
2003 2004 005 2006 2007 2008

+1-30 Multiprocessors per device .

*8 Thread Processors per
multiprocessor
«400 MHz to 1.5 GHz

Bundweith
[T

2043 084 3085 2e0E 087

Dense Stereo Correspondence
A simultaneous localization and mapping algorithm would include 3 main steps:

* Dense Stereo Vision
* 3D Scan Matching
* Grid Map Estimation (Particle Filter)

For this project I will be implementing dense stereo vision algorithms, which generate depth maps
based on a stereo camera system (see below). This algorithm typically contains a calibration stage
that is followed by rectification, correspondence and post-processing. A large body of work exists
on these methods [3,4,5].

(a) (b) () (d)

Fig. 6. Resulis with simulated sterco images. (a) Virtual left stereo image.
(b} By S&S DP without nowse. (c) By WTA MW3 Ir with noise. (d) By 5&5
DP with noise.

NVIDIA has provided an implementation of stereo correspondence [6], however it is a very “quick
& dirty” implementation; in other words it runs very fast, but does not produce high quality
results. A recently published paper [7] has shown how to implement a high quality stereo

correspondence on SIMD CPU hardware such as SSE instruction sets. My primary goal in this
project is to “upgrade” NVIDIA’s code to produce high quality stereo correspondence without
significantly increasing the algorithm execution time.

Stereo Correlation

Dense stereo correlation algorithms take two images of the same object from slightly different
perspectives and attempt to match every pixel in one image with its corresponding pixel for the
same object in the other image. For images that have been correctly rectified and are taken from
perfectly parallel but offset positions, this search can be limited to a search along the baseline (or
horizontal axis) in one direction (see image below). This results in significant computational
savings for the algorithm.

The search is a minimization over the search direction of a cost function that signifies the
matching error. This cost function is the Sum of Square Differences (SSD) over a small window
(10x10 pixels).

In the NVIDIA sample code this is all that was implemented, however there are a number of
improvements that can be made to refine this search, which I have implemented in my code.

Left Image Right Image

- -

Search Direction

Performing a Left-Right consistency check will improve accuracy at depth discontinuities [4]. This
requires the same correlation and minimization to be performed on the left-to-right and right-to-
left image. When this is complete, the results are verified and if they match, it further confirms a
correct correlation; however if they do not match it indicates a problem (most likely an occlusion
at a depth discontinuity) and the result is inconclusive.

A naive implementation of the left-right consistency check will double the processing that needs to
be done, however this is not necessary as all of the correlations have already been computed. In

my final implementation, I have implemented a left right check without adding any extra
correlations (however the memory requirements have significantly increased).

Additionally, if there is not enough texture in the surface to correctly match the images, the SSD
will have a flat profile across the disparities. In order to check for a uniqueness test is performed
where the new minimum value must be have a SSD value of 250 less than the previous best SSD.

First Steps in Stereo CUDA

The first step in my project is to get the stereo imaging code provided by NVIDIA to run on my
computer. The source code is available along with a PDF that describes the algorithm’s theory and
optimized implementation. The first problem was that the source code is compiled for Windows
and operates using a camera that I don’t have. Since [want to run my algorithm on Linux as well as
use stock images to evaluate accuracy, a significant “recompilation” effort was needed to get the
code to this state.

The below image shows the results of this work; the code is running on Linux (within Eclipse),
using OpenCV for file handling, and CUDA for stereo image processing. The two stereo pair images
were downloaded from the web [8]. The bottom right window shows the disparity map where
lighter colors represent points closer to the camera and darker colors represent points further
from the camera.

2 Applications Places System @ &12) Brent Tweddle 85 & i Mon Apr 27, 12:06 M [§]
- SLEreoy Lo [=lENES))- cu - Eclipse Platform [(=Jl=](x

b & [Eoict+]
(& Main.cpp =B/ 8 outl 8 ®mMak =8
W w[e]”
[e Duspamy\mage_GLi
@ leftTex : texture<ur
@ rightTex : texture<i
ROWSperTHREAD
BLOCK_W
RADIUS_H
RADIUS_V
MIN_SSD
STEREO_MIND
STEREO_MAXD
#
#
°
°
°
°
#
°
°
°
#

STEREO_DISP_STEI |
SHARED_MEM_SIZ
SetupStereo(unsig
SetDisplayimageBt
Cleanupstereo() : i
UnregisterGLBuffer
GAIN

drawDisparityKerne

convertBGRA_Inver

static int g_w;
static int g_h;

stereokernel(float*]
X

T Dl D]

{2 Problems | Tasks | & Console 52 I3 Properties| 47 Search s w 58 (@) # 8- 9> =0
Stereo Release [C/C++ Local Application] fhome/tweddle/Documents/18.337/project/NVIDIA_CUDA_SDK/bin/linux/release/stereo (4/27/09 12:05 PM)
Stereo Time: 16.143 ms/frame

Stereo Time: 16.139 ms/frame

Stereo Time: 16.180 ms/frame

Stereo Time: 16.195 ms/frame

Stereo Time: 16.177 ms/frame

Stereo Time: 16.121 ms/frame

Stereo Time: 16.194 ms/frame

Stereo Time: 16.149 ms/frame

Stereo Time: 16.129 ms/frame

Writable Smart Insert 386 : 3

(=] (@ c/c++ - stereojster... |(@ memcpy() - Standar... | 7 [Synaptic Package M... | & [Downloads] (& [gemsvncitargz 1 |’ gemsvnc - File Browser |[3 stereo Disparity Map... | a

The second step in my project was to time the original code. I have a GeForce 9800GT, which has
14 multiprocessors (112 Cores) that are running at 1.51 GHz. In the timing analysis I included the
transfer time from the memory to the GPU as well as the computation of the disparity map;

however I did not include the time to draw the image on the screen (which is done on the
graphics card by OpenGL).

On my GPU, a 640x480 image takes approximately 16 ms, of which less than 1 ms is used for the
memory transfers (CPU->GPU), and allocations take by commenting out the CUDA kernel code. I
determined this by commenting out the kernel code and running the timing analysis. I tried
improving the memory transfer time by using non-paged CPU memory, but it only resulted in a 0.2
second improvement.

A performance analysis of similar algorithms was published in [7] that used a 512x512 image on a
3.2 GHz Pentium 4. The standard OpenCV implementation took 10.6 seconds to run, however this
used dynamic programming and is not a good comparison against the algorithm that I
implemented.

In this paper another algorithm was implemented that is very similar to the NVIDIA stereo
algorithm, and is highly optimized using SSE2 instructions on the Pentium processor. This
algorithm took 87 ms to run the slightly smaller 512x512 image.

NVIDIA Stereo Approach

In the stereo sample provided by NVIDIA [6], a high speed approach is used. Each CUDA thread
corresponds to one column of pixels, a block corresponds to a 2D block of pixels (see figure below.

Pixels
= = =] =] =] =]
m] o m| m]) o
= - - - - -
L] 2 | £] £ £ 2
S E G
f"l Iy

At each iteration of a thread block, all of the pixels are offset by the same disparity value and their
individual squared difference is calculated and stored in shared (local on chip) memory. The
threads access their nearby squared differences to produce the sum of squared differences over
the window size. This is compared to a minimum value in the disparity image, and if it is less than
the stored value the disparity image is updated. The threads repeat this process for all disparity
values within the search range.

Post Processing Upgrades

In order to implement the left right check without performing any additional correlations, we can
store each (left to right) correlation in both the Left_Disparity{X,Y} and Right_Disparity{X-d,Y}
location. In my implementation, rather than storing the disparity values in a 2D array, they are
stored in a 3D grid, which is searched after all of the disparity values are calculated. Originally this
was thought to be the only way to implement a LR check with subpixel resolution, however in
retrospect it may be possible to avoid this.

After all of the disparity values are calculated, each thread loops through each pixel in the column
searching for the best disparity and checking the uniqueness ratio. Once this is done a Left-Right
check can be performed.

Left-Right Check Race Conditions

Since each thread is executed in parallel and the order in which they are executed is not
deterministic, race conditions may exist if pixels from other threads are being read and written to.
[found that this was the case in my initial implementation, and it caused flickering in the disparity
values of pixels as values were defined out of order.

To solve this, I created another CUDA kernel that has one thread block for each pixel. In this
model, I read all of the pixels, synchronized the threads and then wrote back all of the LR
corrections. This removed the race conditions and the flickering from the images.

The resulting image can be seen in the below figure. It is clear that this image has less noise and
has removed (grayed out) occluded sections of the image.

- STETE0 D) PNty MEPICOMPULAtONILIOW! (= ENE

‘*"ﬂ«r;‘ -n]"t_]iw -

Performance Analysis

The improved algorithm with the 3D array and LR checks now runs in 25.7 seconds. Although this
is a significant slowdown from the original code, it is still better than existing CPU algorithms.

Because the number of independent threads far exceeds the number of available thread
processors, this code can hide the memory latency but not completely remove it. The main limiting
factor in this application is memory latency. Since the total amount of data is relatively small the
CUDA code is also not “memory bandwidth limited.” Therefore the code’s secondary limitation is
by the number of concurrent threads that are being processed. This is referred to as the GPU
occupancy, and NVIDIA has provided an Excel spreadsheet to analyze this. Each thread in my main
kernel requires 20 registers, 80 bytes of shared memory, and 20 bytes of constant memory. If this
exceeds the resources of each thread processor, another thread processor must be used to store
the “spillover” data, which therefore decreases the number of thread processors being used for
useful work.

The Occupancy Calculator can be seen in the below figure: I entered the compute version of my
device (1.1), the number of registers used per thread (20), the number of bytes of shared memory
(80) and the number of bytes of constant memory (80) and it indicates that I am being limited by
the number of registers. The right hand plot shows that if | were to decrease the number of
registers being used to 16, [would significantly could improve my performance.

®@00 CUDA_Occupancy_calculator.xls

Pl k& 8l [0 6 & seele 20 & J O [oxl- 6

New Open Save Print Import Copy Paste Format Undo AutoSum Sort A-Z Sort Z-A Gallery Toolbox Zoom Help.
| Sheets ‘ Charts SmartArt Graphics WordArt
< A C D E F G H 1 J K 18 M N [#] P Q R
2 Eor more ion on NVIDIA CUDA, visit jia.comicuda
3
4 Just follow steps 1, 2, and 3 below! {or click here for help) Your chosen resource usage is indicated by the red triangle on the graphs.
5 The other data points represent the range of possible block sizes, register counts, and shared memory allocation.
6 1) Select Compute Capability (click): | I T r
7 Varying Block Size Varying Register Count
& 2) Enter your resource usage: rying
Threads Per Block [28] (Heln 1 a2
10 Registers Per Thread [20|
11 Shared Memary Per Block (byles) 80
12 Max Occupancy Max Occupancy
13 (Don't edit anything below this line) m 24
14 =
15 3)GPU Data is displayed here and in 5
16 Active Threads per Multiprocessor 384| (o) g
17 Active Warps per Multiprocessar 12 16
18 Active Thread Blocks per Multiprocessar 3 a0
19 Occupancy of each Multiprocessor 50%] g My Slogs Sze M Méﬁl:ggow
20 S
21 v =
22 Physical Limits for GPU: 1.1
23 [Threads [Warp 32
24 | Warps | Multiprocessor 24 A
25 | Threads / Multiprocessor 768 -) h - 0
26 | Thread Blocks / Multiprocessor 8 18 BC 44 208 7z kg 400 454 o 4 & 12 1% 20 24 28 az
27 Total # of 32-b4 registers | Multiprocessor 8192 Threads Per Block Registers Per Thread
28 Register allocation uni size 256
29 Shared Memory | Mulliprocessor (byles) 16384
30 Warp allocation granuiarily (for register allocation) 2
31
32 | Allocation Per Thread Block Varying Shared Memory Usage
33 |Warps [
34 |Registers 2560 £
35 | Shared Memory 512 —
36 | These cala are used in comaubing the accupancy data in bioe 2 pancy
37
38 Maximum Thread Blocks Per Multiprocessor Blocks E
39 'Limited by Max Warps / Mulliprocessor 3 g 16
40 |Limited by Registers / Multiprocessor £2 & ;“"
41 | Limited by Shared Memory | Muliprocessor 32 232,
42 | Thread Block Limit Per Mullrocesser highignted RED
43
44 CUDA Occupancy Calculater | | 0
45 Version | 15 = 5 g = 4 B @ = =2 =om B o»o®
6 Copyright and Liconse | FESRETEREFREEREE
a7 ‘Shared Mamory Per Thresd
48
aa

In conclusion, I have shown that a GPU’s would be usable for real-time stereo vision for
Simultaneous Localization and Mapping. | showed a method to improve the stereo accuracy
without significantly degrading performance. I analyzed and profiled this code to determine that
its primary performance limitation was the number of registers required by each thread.

Much further development is required to improve the implementation to where it can be usable
on an actual vehicle. The CUDA source code for this algorithm is provided in the Appendix.

[1] Zhou, Wh,, Du, X, Ye, Xq., Gu, Wk. (2005), "Binocular stereo vision system based on FPGA",
Journal of Image and Graphics, Vol. 10 pp.1166-70.
[2] www.nvidia.com/cuda
[3]Scharstein, Szeliski “A Taxonomy and Evaluation of Dense Tow-Frame Stereo Correspondence
Algorithms”, [JCV 2002
[4]Brown, Burschka, “Advances in Computational Stereo”, IEEE PAMI, 2003
[5] Bradski & Kaehler, “Learning OpenCV”, OReilly 2008
[6] Stam,]. “Stereo Imaging with CUDA,” MIT IAP 6.963 Website Link, Jan 2008
[7] Van der Mark, Gavrila, “Real-Time Dense Stereo for Intelligent Vehicles”, IEEE Trans. ITS, 2006
[8] S. Birchfield and C. Tomasi, “Depth Discontinuities by Pixel-to-Pixel Stereo,” Int Jorn. Computer
Vision, 1999 (www.ces.clemson.edu/~stb/research/stereo_pZ2p)

[9] Hirschmuller, H; Innocent, P. R. and Garibaldji, J. “Real-Time Correlation-Based Stereo
Vision with Reduced Border Errors” Int Jour. Computer Vision, 2002

Appendix: Source Code: Stereo.cu

N

*

¥ O K XK XK X X X X X X ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ K K X X X X X X ¥ ¥ ¥ ¥ ¥

*/

Copyright 1993-2007 NVIDIA Corporation. All rights reserved.
NOTICE TO USER:

This source code is subject to NVIDIA ownership rights under U.S. and
international Copyright laws. Users and possessors of this source code
are hereby granted a nonexclusive, royalty-free license to use this code
in individual and commercial software.

NVIDIA MAKES NO REPRESENTATION ABOUT THE SUITABILITY OF THIS SOURCE

CODE FOR ANY PURPOSE. IT IS PROVIDED "AS IS" WITHOUT EXPRESS OR

IMPLIED WARRANTY OF ANY KIND. NVIDIA DISCLAIMS ALL WARRANTIES WITH
REGARD TO THIS SOURCE CODE, INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL,
OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE
OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE
OR PERFORMANCE OF THIS SOURCE CODE.

U.S. Government End Users. This source code is a "commercial item" as
that term is defined at 48 C.F.R. 2.101 (OCT 1995), consisting of
"commercial computer software" and "commercial computer software
documentation" as such terms are wused in 48 C.F.R. 12.212 (SEPT 1995)
and is provided to the U.S. Government only as a commercial end item.
Consistent with 48 C.F.R.12.212 and 48 C.F.R. 227.7202-1 through
227.7202-4 (JUNE 1995), all U.S. Government End Users acquire the
source code with only those rights set forth herein.

Any use of this source code in individual and commercial software must
include, in the user documentation and internal comments to the code,
the above Disclaimer and U.S. Government End Users Notice.

// includes, system
// includes, system
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>

#ifdef _WIN32
define WINDOWS_LEAN_AND_MEAN

#

include <windows.h>

#endif

#include <GL/glew.h>
#include <cuda.h>

#include <cutil.h>

#include <cudaGL.h>

#include <cuda_gl_interop.h>

#include "Stereo.h"

#define SQCa) (__mul24(a,a)) // sad or ssd

int divUp(int a, int b)

{

ifCa%b == 0)
return a/b;

else
return a/b + 1;

}

//The Image width & height.
static int g_w;
static int g_h;

//Pointers to emory for the disparity value (d) and the current minimum SSD, also on the GPU:
//3d disparity map

static cudaPitchedPtr g_disparitylLeft3D;

static cudaPitchedPtr g_disparityRight3D;

static cudaExtent dispExtent;

static float *g_disparityleft;
static float *g_disparityRight;
static int *g_minSSD;

static size_t g_floatDispPitch;
static size_t g_floatDispPitchRight;

//Pointers to cudaArrays, which contain a copy of the image data for texturing
cudaArray * g_leftTex_array;
cudaArray * g_rightTex_array;

//These values store OpenGL buffer ID-is which are used to draw the image on the screen using CUDA-is OpenGL interop
capability. These are set from the main program after the bufferes are created..

unsigned int LeftImage_GLBufferlID;

unsigned int RightImage_GLBufferlID;

unsigned int DisparityImage_GLBufferlID;

//Declaration of the textures used for accessing the image data
texture<unsigned char, 2, cudaReadModeNormalizedFloat> leftTex;
texture<unsigned char, 2, cudaReadModeNormalizedFloat> rightTex;

//Defined constants:

#define ROWSperTHREAD 40 // the number of rows a thread will process
#define BLOCK_W 128 // the thread block width

#define RADIUS_H 5 // Kernel Radius 5V & 5H = 11x11 kernel
#define RADIUS_V 5

#define MIN_SSD 500000 // The mimium acceptable SSD value

#define STEREO_MIND 0.0f // The minimum d range to check

#define STEREO_MAXD 48.0f // the maximum d range to check

#define STEREQO_DISP_STEP 1.0f // the d step, must be <= 1 to avoid aliasing
#define SHARED_MEM_SIZE ((BLOCK_W + 2*RADIUS_H)*sizeof(int)) // amount of shared memory used
#define DISP_VALLEY 10

#define UNIQUENESS_RATIO_THRESH 1.0005f

/R ko ok

The function SetupStereo allocates GPU memory and sets critical parameters in stored in global variable.

We pass the width & height into the function, but let CUDA allocate the host memory.

Memory is allocated as pinned using cudaMallocHost or traditionally using malloc.

Pinned memory can provide nearly double the transfer speed to the GPU, but is not always compatible

with the video capture source, as it the case with the Point Grey camera driver.

*********/
extern "C" void SetupStereo(unsigned int w, unsigned int h, unsigned char** leftHost, unsigned char** rightHost)

{

g-w = W;

g-h = h;

if (cudaSuccess != CUDA_SAFE_CALL(cudaMallocHost((void**) leftHost, g_w*g_h))) {
printf("Memory Allocation Error\n");
exit(0);

}

if (cudaSuccess != CUDA_SAFE_CALL(cudaMallocHost((void**) rightHost, g_w*g_h))) {
printf("Memory Allocation Error\n");
exit(0);

}

dispExtent = make_cudaExtent(w*sizeof(float), h, (size_t) STEREO_MAXD);
CUDA_SAFE_CALL(CcudaMalloc3D(&g_disparitylLeft3D, dispExtent));
CUDA_SAFE_CALL(CcudaMalloc3D(&g_disparityRight3D, dispExtent));

CUDA_SAFE_CALL(cudaMallocPitch((void**)&g_disparitylLeft,&g_floatDispPitch,w*sizeof(float),h));

CUDA_SAFE_CALL(CcudaMallocPitch((void**)&g_disparityRight,&g_floatDispPitchRight,w*sizeof(float),h));
// CUDA_SAFE_CALL(CcudaMallocPitch((void**)&g_minSSD, &g_floatDispPitch,w*sizeof(int),h));
//left-right consistency check

g_floatDispPitch /= sizeof(float);
g_floatDispPitchRight /= sizeof(float);

cudaChannelFormatDesc U8Tex = cudaCreateChannelDesc<unsigned char>(Q);
cudaMallocArray(&g_leftTex_array, &U8Tex, g_w, g_h);
cudaMallocArray(&g_rightTex_array, &U8Tex, g_w, g_h);

// for debug - show the memory on the GPU

unsigned int free,total;

cuMemGetInfo(&free,&total);

printf("Memory After Allocation - Free: %d, Total: %d\n",free/(1024*1024),total/(1024*1024));
}

/*********

SetDisplayImageBuffers
Simply sets the OpenGL buffer IDs and registers them for CUDA GLinterop
*********/
void SetDisplayImageBuffers (unsigned int Left, unsigned int Right,unsigned int Disparity)
{
LeftImage_GLBufferID = Left;
RightImage_GLBufferID = Right;
DisparityImage_GLBufferID = Disparity;

cudaGLRegisterBufferObject(LeftImage_GLBufferID);

cudaGLRegisterBufferObject(RightImage_GLBufferID);

cudaGLRegisterBufferObject(DisparityImage_GLBufferID);
}

/**********

CleanupStereo - releses host & GPU memory allocated
***********/
extern "C" int CleanupStereo()

{

cudaFreeArray(g_leftTex_array);
cudaFreeArray(g_rightTex_array);
cudaFree(g_disparitylLeft3D.ptr);
cudaFree(g_disparitylLeft);
cudaFree(g_disparityRight3D.ptr);
cudaFree(g_disparityRight);
cudaFree(g_minSSD);

return 0;

}

/**********

Used at cleanup to unregister OpenGL buffers
**********/

void UnregisterGLBufferForCUDA(int buffer)

{

CUDA_SAFE_CALL(CcudaGLUnregisterBufferObject(buffer));

}

/**********

drawDisparityKernel()

This function converts the floating point disparity values into a false color RGBA image.

The image is allocated as an Op2@enGL buffer from the main program

*********/

#define GAIN (1.0f / STEREO_MAXD)

__global__ void drawDisparityKernel(

const int x
const int y = __

uchar4 temp;
if(x < width & y < height) {

float d =

uchar4 * out_image,

__mul24(blockIdx.x,blockDim.x) + threadIdx.x;
mul24(blockIdx.y,blockDim.y) + threadIdx.y;

disparity[__mul24(y,disparity_pitch)+x];

// first draw unmatched pixels in grey

if(d == -1.0f)

{

else

}

out_image[__mul24(y,out_pitch)+x]

temp.x = 50;
temp.y = 50;
temp.z = 50;
temp.w = 255;
float val = ((float)d)*GAIN;
float r = 1.0f;
float g = 1.0f;
float b = 1.0f;
if (val < 0.25f) {
r=0;
g = 4.0f * val;
} else if (val < 0.5f) {
r =0;
b=1.0+4.0f * (0.25f - val);
} else if (val < 0.75f) {
r =4.0f * (val - 0.5f);
b =0;
} else {
g =1.0f + 4.0f * (0.75f - val);
b =0;
1
temp.x = 255.0 * r;
temp.y = 255.0 * g;

temp.z = 255.0 * b;

temp.w =

255;

= temp;

size_t out_pitch,

float *disparity,
size_t disparity_pitch,
int width,

int height)

/*******

stereoKernel
Now for the main stereo kernel:

There are five parameters:

disparityPixel & disparityMinSSD point to memory containing the disparity value (d)

and the current minimum sum-of-squared-difference values for each pixel.

width & height are the image width & height, and out_pitch specifies the pitch of the output data in words
(i.e. the number of floats between the start of one row and the start of the next.).

*********/

__global__ void stereoKernel(cudaPitchedPtr disparityPitchedPtr,

disparity map
for the disparity map

*disparityMinSSD,

output memory for the disparity map

{

cudaPitchedPtr disparityPitchedRightPtr,
cudaExtent disparityExtent,
float *disparityPixel, // pointer to the output memory for the

float *disparityPixelRight, // pointer to the output memory

// int
int width,
int height,

size_t out_pitch) // the pitch (in pixels) of the

extern __shared__ int col_ssd[]; // column squared difference functions

float d; // disparity value
int diff; // difference temporary value
int ssd; // total SSD for a kernel

float x_tex; // texture coordinates for i
float y_tex;

int row; // the current row in the roll
int i, // for index variable
//int z;

char* dispSlice;
float* disparity_row;
float best_ssd;

float value;

// use define's to save registers
#define X (__mul24(blockIdx.x,BLOCK_W) + threadIdx.x)
#define Y (__mul24(blockIdx.y,ROWSperTHREAD))

// for threads reading the extra border p
// into shared memory to store the values

int extra_read_val = 0;
if(threadIdx.x < (2*RADIUS_H)) extra_read

char* dispDevPtr = (char*) disparityPitch
size_t dispPitch = disparityPitchedPtr.pi
size_t dispSlicePitch = __mul24(dispPitch

char* dispDevRightPtr

mage lookup

ing window

ixels, this is the offset

_val = BLOCK_W+threadIdx.x;

edPtr.ptr;
tch;
,disparityExtent.height);

(char*) disparityPitchedRightPtr.ptr;

size_t dispPitchRight = disparityPitchedRightPtr.pitch;

size_t dispSlicePitchRight = __mul24(disp

PitchRight,disparityExtent.height);

x_tex = X - RADIUS_H;
for(d = STEREO_MIND; d < STEREO_MAXD; d += STEREO_DISP_STEP)
{

col_ssd[threadIdx.x] = 0;

if(extra_read_val>0) col_ssd[extra_read_val] = 0;

// do the first row
y_tex = Y - RADIUS_V;

for(i = @; 1 <= 2*RADIUS_V; i++)

{
diff = (int)(255.0f*tex2D(leftTex,x_tex,y_tex)) - (int)(255.0f*tex2D(rightTex,x_tex-d,y_tex));
col_ssd[threadIdx.x] += SQ(diff);

if(extra_read_val > 0)
{
diff = (int)(255.0f*tex2D(leftTex,x_tex+BLOCK_W,y_tex)) -
(int)(255.0f*tex2D(rightTex,x_tex+BLOCK_W-d,y_tex));
col_ssd[extra_read_val] += SQ(diff);
1
y_tex += 1.0f;

1
__syncthreads(Q);

// now accumulate the total
1if(X < width & Y < height)

{
ssd = 0;
for(i = 0;i<=(2*RADIUS_H);i++)
{
ssd += col_ssd[i+threadIdx.x];
}
// the 1.0e-5 factor is a bias due to floating point error in the accumulation of the SSD value
// if(ssd < disparityMinSSD[__mul24(Y,out_pitch) + X])
// {
dispSlice = dispDevPtr + __mul24(d,dispSlicePitch);
disparity_row = (float*) (dispSlice + __mul24((CY),dispPitch));
disparity_row[X] = ssd;
if (X-d > 0)
{
dispSlice = dispDevRightPtr + __mul24(d,dispSlicePitchRight);
disparity_row = (float*) (dispSlice + __mul24((Y),dispPitchRight));
disparity_row[(unsigned int) (X-Cunsigned int)d)] = ssd;
}
1
__syncthreads();

// now do the remaining rows

y_tex = Y - RADIUS_V; // this is the row we will remove

for(row = 1;row < ROWSperTHREAD && (row+Y < (height+RADIUS_V)); row++)

{
// subtract the value of the first row from column sums
diff = (int)(255.0f*tex2D(leftTex,x_tex,y_tex)) - (int)(255.0f*tex2D(rightTex,x_tex-d,y_tex));
col_ssd[threadIdx.x] -= SQ(diff);

// add in the value from the next row down
diff = (int)(255.0f*tex2D(leftTex,x_tex,y_tex + (float)(2*RADIUS_V)+1.0f)) -
(int)(255.0f*tex2D(rightTex,x_tex-d,y_tex + (float)(2*RADIUS_V)+1.01));
col_ssd[threadIdx.x] += SQ(diff);

if(extra_read_val > 0)
{
diff = (int)(255.0f*tex2D(leftTex,x_tex+(float)BLOCK_W,y_tex)) -
(int)(255.0f*tex2D(rightTex,x_tex-d+(float)BLOCK_W,y_tex));
col_ssd[extra_read_val] -= SQ(diff);

diff = (int)(255.0f*tex2D(leftTex,x_tex+(float)BLOCK_W,y_tex +
(float)(2*RADIUS_V)+1.0f)) - (int)(255.0f*tex2D(rightTex,x_tex-d+(float)BLOCK_W,y_tex + (float)(2*RADIUS_V)+1.0f));
col_ssd[extra_read_val] += SQ(diff);

}
y_tex += 1.0f;
__syncthreads();
if(X<width && (Y+row) < height)
{
ssd = 0;
for(i = 0;i<=(2*RADIUS_H);i++)
{
ssd += col_ssd[i+threadIdx.x];
}
// if(ssd < disparityMinSSD[__mul24(Y+row,out_pitch) + X])
// {
dispSlice = dispDevPtr + __mul24(d,dispSlicePitch);
disparity_row = (float*) (dispSlice + __mul24((Y+row),dispPitch));
disparity_row[X] = ssd;
if (X-d > 0)
{
dispSlice = dispDevRightPtr + __mul24(d,dispSlicePitchRight);
disparity_row = (float*) (dispSlice + __mul24((Y+row),dispPitchRight));
disparity_row[(unsigned int)(X-Cunsigned int)d)] = ssd;
1
// disparityPixel[__mul24(Y+row,out_pitch) + X] = d;
// disparityMinSSD[__mul24(Y+row,out_pitch) + X] =
ssd;
// 3
}

__syncthreads(); // wait for everything to complete
} // for row loop
} // for d loop

if(X<width)
{

for(i = 0;i<ROWSperTHREAD && Y+i < height;i++)
{
disparityPixel[__mul24((Y+1i),out_pitch)+X] = -1.0f;

dispSlice = dispDevPtr + __mul24(STEREO_MAXD-1,dispSlicePitch);
disparity_row = (float*) (dispSlice + __mul24((Y+i),dispPitch));
best_ssd = disparity_row[X];

for(d = STEREO_MIND; d < STEREO_MAXD; d += STEREO_DISP_STEP)

{
dispSlice = dispDevPtr + __mul24(d,dispSlicePitch);
disparity_row = (float*) (dispSlice + __mul24((Y+i),dispPitch));
value = disparity_row[X];
if (value < (best_ssd-DISP_VALLEY))
{
disparityPixel[__mul24((Y+1i),out_pitch)+X] = d;
best_ssd = value;
1
}

disparityPixelRight[__mul24((Y+1i),out_pitch)+X] = -1.0f;

dispSlice = dispDevRightPtr + __mul24(STEREO_MAXD-1,dispSlicePitchRight);

disparity_row = (float*) (dispSlice +
best_ssd = disparity_row[X];

mul24((Y+1),dispPitchRight));

for(d = STEREO_MIND; d < STEREO_MAXD; d += STEREO_DISP_STEP)

{
dispSlice = dispDevRightPtr + __mul24(d,dispSlicePitchRight);
disparity_row = (float*) (dispSlice + __mul24((Y+1i),dispPitchRight));
value = disparity_row[X];
if (value < (best_ssd -DISP_VALLEY))
{
disparityPixelRight[__mul24((Y+1i),out_pitch)+X] = d;
best_ssd = value;
}
}
}
1
/*
__syncthreads();
if(X<width)
{
for(i = 0;i<ROWSperTHREAD && Y+i < height;i++)
{

d = disparityPixel[__mul24((Y+1i),out_pitch)+X];

if ((X-d) < 0)

jisparityPixel[__mu124((Y+i),out_pitch)+X] = -1.0f;

ilse if (disparityPixelRight[__mul24((Y+1i),out_pitch)+X-Cunsigned int)d] != d)
jisparityPixel[__mu124((Y+i),out_pitch)+X] = -1.0f;

// disparityPixelRight[__mul24((Y+1),out_pitch)+X-Cunsigned int)d] = -1.0f;
3
3
3
*/
__syncthreads(Q);
3
__global__ void LRCheck(float *disparityPixel, // pointer to the output memory for the disparity map

disparity map

float *disparityPixelRight, // pointer to the output memory for the

size_t out_pitch) // the pitch (in pixels) of the output

memory for the disparity map

{

#define XX (blockIdx.x)
#define YY (blockIdx.y)

1.0f;

float d;
int check = 0;

d = disparityPixel[__mul24(YY,out_pitch)+XX];
if ((XX-d) < @)

{
check = 1;
}
else if (disparityPixelRight[__mul24(YY,out_pitch)+XX-Cunsigned int)d] !'= d)
{
check = 1;
// disparityPixelRight[__mul24((YY+1),out_pitch)+XX-Cunsigned int)d] = -
1

__syncthreadsQ);

if (check == 1) {
disparityPixel[__mul24(YY,out_pitch)+XX] = -1.0f;
1
}

/*********

stereoProcess

The main function called for every frame is stereoProcess.

p_hostLeft & p_hostRight contain teh source data

**********/
extern "C" float stereoProcess(unsigned char * p_hostlLeft,unsigned char * p_hostRight, int ImageType)

{
unsigned char * GLtemp;

unsigned int timer;
dim3 grid(1,1,1);

dim3 threads(16,8,1);
dim3 gridLR(1,1,1);
dim3 threadsLR(16,8,1);

threads.x = BLOCK_W;
threads.y = 1;
grid.x = divUp(g_w, BLOCK_W);
grid.y = divUp(g_h,ROWSperTHREAD);

threadsLR.x = 1;
threadsLR.y = 1

gridLR.x = g_w;

gridLR.y = g_h;

//printf("Copying: %d, %d\n",g_w, g_h);

// Greyscale Image, just copy it.

// printf("Copy Location: %X\n", (int) p_hostLeft);

)

CUT_SAFE_CALL(CcutCreateTimer(&timer));
CUT_SAFE_CALL(CcutStartTimer(timer));

cudaMemcpyToArray(g_leftTex_array, @, @, p_hostLeft,g_w * g_h, cudaMemcpyHostToDevice);
cudaMemcpyToArray(g_rightTex_array, @, 0, p_hostRight,g_w * g_h, cudaMemcpyHostToDevice);

// Set up the texture parameters for bilinear interpolation & clamping
leftTex.filterMode = cudaFilterModelinear;
cudaBindTextureToArray(leftTex, g_leftTex_array);

rightTex.filterMode = cudaFilterModelinear;
cudaBindTextureToArray(rightTex, g_rightTex_array);

stereoKernel<<<grid,threads, SHARED_MEM_SIZE>>>(g_disparitylLeft3D,g_disparityRight3D,dispExtent,g_disparit
yLeft,g_disparityRight, /*g_minSSD,*/g_w,g_h,g_floatDispPitch);

//stereoKernel<<<grid,threads, SHARED_MEM_SIZE>>>(g_disparitylLeft,g_minSSD,g_disparitylLeft_Check,g_minSSD_
Check,g_w,g_h,g_floatDispPitch);

cudaThreadSynchronize();
LRCheck<<<gridLR,threadsLR>>>(g_disparitylLeft,g_disparityRight,g_floatDispPitch);
cudaThreadSynchronize();

cudaUnbindTexture(leftTex);
cudaUnbindTexture(rightTex);

CUT_SAFE_CALL(CcutStopTimer(timer)); // don't time the drawing
float retval = cutGetTimerValue(timer);

// now for OpenGL's copy to display

cudaGLMapBufferObject((void**)&GLtemp, LeftImage_GLBufferID);
cudaMemcpyFromArray(GLtemp,g_leftTex_array,0,0,g_w*g_h, cudaMemcpyDeviceToDevice);
cudaGLUnmapBufferObject(LeftImage_GLBufferID);

cudaGLMapBufferObject((void**)&GLtemp, RightImage_GLBufferID);
cudaMemcpyFromArray(GLtemp,g_rightTex_array,0,0,g_w*g_h,cudaMemcpyDeviceToDevice);
cudaGLUnmapBufferObject(RightImage_GLBufferID);

// Now draw the disparity map

threads.x = 16;

threads.y = 8;

grid.x = divUp(g_w , threads.x);

grid.y = divUp(g_h , threads.y);

uchar4 * DisparityMap;

size_t DispPitch;
cudaMallocPitch((void**)&DisparityMap,&DispPitch,g_w*sizeof(uchar4),g_h);

drawDisparityKernel<<<grid,threads>>>(DisparityMap,DispPitch/sizeof(uchar4),g_disparitylLeft,g_floatDispPi

tch,g_w,g_h);
cudaThreadSynchronize();
CUT_CHECK_ERROR("Kernel execution failed writing disparity map!");
// now copy the output for openGL
cudaGLMapBufferObject((void**)&GLtemp, DisparityImage_GLBufferID);
cudaMemcpy2D(GLtemp,g_w*sizeof(uchar4),DisparityMap,DispPitch,g_w*sizeof(uchar4),g_h,cudaMemcpyDeviceToDe
vice);

cudaGLUnmapBufferObject(DisparityImage_GLBufferID);
cudaFree(DisparityMap);
return retval;

Appendix: Source Code: Main.cpp

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <cv.h>
#include <highgui.h>

#include <cuda.h>
#include <cutil.h>

// includes for OpenGL
#include <GL/glew.h>
#include <GL/glut.h>

#include "Stereo.h"

//#include "AVIReader.h"

// Define this symbol if a point grey camera is used. The user must provide
// digiclops.lib & triclops.lib along with the corresponding dl1l's from the Point Grey SDK

//#define ALLOW_POINT_GREY 1

// Camera aquisition and processing parameters
static unsigned ImageWidth = 630;
static unsigned ImageHeight = 480;

static GLuint LeftImageBuffer = 0; // This is an identifier of a OpenGL Buffer Object which will

hold the image to be displayed
static GLuint RightImageBuffer = 0;
static GLuint DispImageBuffer = 0;

static GLuint LeftImageTexture = 0; // We also need an OpenGL texture object to draw the image.

the data referenced by ImageBuffer to this texture
static GLuint RightImageTexture = 0;
static GLuint DispImageTexture = 0;

static GLuint GLWindowWidth = 800;
static GLuint GLWindowHeight = 600;

unsigned char * leftImg;
unsigned char * rightImg;

static int frame_count; // counts the number of frames for timing
static float time_avg;

// forward declerations for glut callback functions
void display(void);

void idle(void);

void keyboard(unsigned char key, int x, int y);
void reshape (int x, int y);

bool use_camera = false;

//AVIReader * LeftAVI;
//AVIReader * RightAVI;
IplImage* LeftImg;
IplImage* RightImg;

L1177 77/77777777777777777

// Program main

We will bind

L111777777777777777777777777777777777/7/77
int
main(C int argc, char** argv)

{

LeftImg = 0;
RightImg = 0;
printf("Hello World\n");

// First parse command line to see if we are using a camera or file
ifCargc > 3) {
/* if(stremp("-c",argv[1]) == 0)
{
use_camera = true;
ImageWidth = atoiCargv[2]);
ImageHeight = atoiCargv[3]);
3
*/ if(stremp("-f",argv[1]) == 0)
{
use_camera = false;
/*
LeftAVI = new AVIReader(argv[2]);
RightAVI = new AVIReader(argv[3]);
if(!LeftAVI->IsOpen())
{
printf("Error Opening Left File\n");
exit(0);
3
if(!RightAVI->IsOpen())
{
printf("Error Opening Right File\n");
exit(0);
3

ImageWidth = LeftAVI->Width();
ImageHeight = LeftAVI->Height(Q);
1f(RightAVI->Width() != ImageWidth || RightAVI->Height() != ImageHeight)
{
printf("Video Files are not of the same size\n");
exit(0);
3
LeftAVI->loop = true;
RightAVI->loop = true;
*/
printf("loading images\n");
LeftImg = cvLoadImage(argv[2], @);
RightImg = cvLoadImage(argv[3], 0);
if (LeftImg == @ || RightImg == @) {
printf("Error Loading Images\n");
exit(@);
}
ImageWidth = LeftImg->width;
ImageHeight = LeftImg->height;

printf("Width, Height, Depth: %d, %d, %d\n", ImageWidth, ImageHeight, LeftImg->depth);

else

printf("” StereoCamera.exe -f [left filename] [right filename] \n");
exit(0);

}

printf("Setting Up Stereo\n");

// Allocate GPU memory

SetupStereo(ImageWidth, ImageHeight, &leftImg, &rightImg);

if(luse_camera)

{
}

// Now we are going to setup the OpenGL Utility Library Stuff to create our window and respond to user
1/0

glutInit(&argc,argv);

glutInitDisplayMode(GLUT_RGB | GLUT_DOUBLE);

glutInitWindowSize(GLWindowWidth, GLWindowHeight);

glutCreateWindow("Stereo Disparity Map Computation Flow");

glutDisplayFunc(display); // set function pointer to call on display
glutKeyboardFunc(keyboard); // set function pointer to call on keyboard input
glutReshapeFunc(reshape);

glutIdleFunc(idle); // set function pointer to call on Idle

glewInit(); // initi the extension wrangler to allow use of the buffer objects
if (!glewIsSupported("GL_VERSION_2_0 GL_VERSION_1_5 GL_ARB_vertex_buffer_object
GL_ARB_pixel_buffer_object™)) {
fprintf(stderr, "Required OpenGL extensions missing.");
exit(-1);
}

// Now we need to create a couple memory buffers for drawing. OpenGL

// and CUDA will share these buffers. OpenGL Buffer Objects are simply

// blocks of memory allocated on the Graphics card. These buffers can contain

// pixel data, vertex data, etc. Using CUDA's OpenGL Interop capabilities

// these buffers become accessable for read/write access. When done, the buffers
// can be returned to OpenGL control and used to draw whatever was placed into them

// The following code is all OpenGL stuff to create and allocate the buffers, no CUDA yet.

// Create a set of OpenGL Buffers to hold the image data we wish to draw

unsigned int size = ImageWidth * ImageHeight * sizeof(GLubyte); // Image will be in 8-bit greyscale
format

glGenBuffers(1, &LeftImageBuffer); // This creates the buffer

glBindBuffer(GL_PIXEL_UNPACK_BUFFER, LeftImageBuffer); // this make the buffer current

glBufferData(GL_PIXEL_UNPACK_BUFFER, size, NULL, GL_DYNAMIC_DRAW); // this allocates the proper size
and sets the data null

glGenBuffers(1, &RightImageBuffer);

glBindBuffer(GL_PIXEL_UNPACK_BUFFER, RightImageBuffer);

glBufferData(GL_PIXEL_UNPACK_BUFFER, size, NULL, GL_DYNAMIC_DRAW);

size = ImageWidth * ImageHeight * sizeof(GLubyte) * 4;
glGenBuffers(1, &DispImageBuffer);

glBindBuffer(GL_PIXEL_UNPACK_BUFFER, DispImageBuffer);
glBufferData(GL_PIXEL_UNPACK_BUFFER, size, NULL, GL_DYNAMIC_DRAW);

glBindBuffer(GL_PIXEL_UNPACK_BUFFER, @); // this make the buffer current

// Left Image Texture

glGenTextures(1, &LeftImageTexture); // Create the texture reference

glBindTexture(GL_TEXTURE_2D, LeftImageTexture); // Make it current

glTexImage2D(GL_TEXTURE_2D, @, GL_LUMINANCE, ImageWidth, ImageHeight, @, GL_LUMINANCE, GL_UNSIGNED_BYTE,
NULL); // Actually allocate the memory

// Right Image Texture

glGenTextures(1, &RightImageTexture); // Create the texture reference

glBindTexture(GL_TEXTURE_2D, RightImageTexture); // Make it current

glTexImage2D(GL_TEXTURE_2D, @, GL_LUMINANCE, ImageWidth, ImageHeight, @, GL_LUMINANCE, GL_UNSIGNED_BYTE,
NULL); // Actually allocate the memory

// Disparity Map Texture

glGenTextures(1, &DispImageTexture); // Create the texture reference

glBindTexture(GL_TEXTURE_2D, DispImageTexture); // Make it current

glTexImage2D(GL_TEXTURE_2D, @, GL_RGBA, ImageWidth, ImageHeight, @, GL_RGBA, GL_UNSIGNED_BYTE, NULL); //
Actually allocate the memory

glBindTexture(GL_TEXTURE_2D, 0);

// pass these buffer ID's for the stereo algorithm and register them for CUDA interop
SetDisplayImageBuffers(LeftImageBuffer,RightImageBuffer,DispImageBuffer);

// zero the timer variables
time_avg = 0;
frame_count = 0;

glutMainLoop(); // that's all the setup! now kick off the main loop

}

void reshape(int x, int y) {
glViewport(0, 0, x, y);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glOrtho(0, 1, 1, 0, -1, 1);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glutPostRedisplay(Q);

}

int count = 0;

/* This is the main function where the stereo process is kicked off */
void display(void) {

// count how many times we run for timing
count++;
int ImgType;

// '1This where image aquisition occurs!!

// Get a frame. For the point grey camera, the pointers to host memory
// where the images get stored were set during the call to ptGreyCam::init
// in the main function.

if(luse_camera)

{
// leftImg = LeftAVI->GetNextFrame();
// rightImg = RightAVI->GetNextFrame();
memcpy(leftImg, LeftImg->imageData, ImageWidth*ImageHeight);
memcpy(rightImg, RightImg->imageData, ImageWidth*ImageHeight);
// leftImg = (unsigned char*) LeftImg->imageData;
// rightImg = (unsigned char*) RightImg->imageData;

if(leftImg == NULL || rightImg == NULL)
{
printf("Video Stopped\n");
exit(@);
}
ImgType = IMAGE_TYPE_GRAY_US;

time_avg += stereoProcess(leftImg, rightImg, ImgType);

// Now we Draw!

glDisable(GL_DEPTH_TEST);

glEnable(GL_TEXTURE_2D);
glClear(GL_COLOR_BUFFER_BIT); // Clear the screen

glBindTexture(GL_TEXTURE_2D, LeftImageTexture); // Select the Image Texture
glBindBuffer(GL_PIXEL_UNPACK_BUFFER, LeftImageBuffer); // And Bind the OpenGL Buffer for the pixel data
glTexSubImage2D(GL_TEXTURE_2D, @, @, O, ImageWidth, ImageHeight, GL_LUMINANCE, GL_UNSIGNED_BYTE, @); // Set the
texture parameters
glBindBuffer(GL_PIXEL_UNPACK_BUFFER, @); // then unbind

glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);

// Now just draw a square on the screen and texture it with the image texture
glBegin(GL_QUADS);

glVertex3f(0.0,0.0,0.5);

glTexCoord2f(1.0, 0.0);

glVertex3f(0.5,0.0,0.5);
glTexCoord2f(1.0, 1.0);

glVertex3f(0.5,0.5,0.5);
glTexCoord2f(0.0, 1.0);

glVertex3f(0.0,0.5,0.5);
glTexCoord2f(0.0,0.0);

glEndQ);

// right image
glBindTexture(GL_TEXTURE_2D, RightImageTexture); // Select the Image Texture
glBindBuffer(GL_PIXEL_UNPACK_BUFFER, RightImageBuffer); // And Bind the OpenGL Buffer for the pixel data
glTexSubImage2D(GL_TEXTURE_2D, @, @, @, ImageWidth, ImageHeight, GL_LUMINANCE, GL_UNSIGNED_BYTE, @); // Set the
texture parameters
glBindBuffer(GL_PIXEL_UNPACK_BUFFER, @); // then unbind

glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
glBegin(GL_QUADS);

glVertex3f(0.5,0.0,0.5);

glTexCoord2f(1.0, 0.0);

glVertex3f(1.0,0.0,0.5);
glTexCoord2f (1.0, 1.0);

glVertex3f(1.0,0.5,0.5);
glTexCoord2f(0.0, 1.0);

glVertex3f(0.5,0.5,0.5);
glTexCoord2f(0.0,0.0);

glEndQ);

// disparity map
glBindTexture(GL_TEXTURE_2D, DispImageTexture); // Select the Image Texture

glBindBuffer(GL_PIXEL_UNPACK_BUFFER, DispImageBuffer); // And Bind the OpenGL Buffer for the pixel data
glTexSubImage2D(GL_TEXTURE_2D, @, @, @,ImageWidth, ImageHeight, GL_RGBA, GL_UNSIGNED_BYTE, @); // Set the texture
parameters
glBindBuffer(GL_PIXEL_UNPACK_BUFFER, @); // then unbind

glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
glBegin(GL_QUADS);

glVertex3f(0.5,0.5,0.5);

glTexCoord2f(1.0, 0.0);

glVertex3f(1.0,0.5,0.5);
glTexCoord2f(1.0, 1.0);

glVertex3f(1.0,1.0,0.5);
glTexCoord2f(0.0, 1.0);

glVertex3f(0.5,1.0,0.5);
glTexCoord2f(0.0,0.0);

glEndQ);

glBindTexture(GL_TEXTURE_2D, @); // Select the Image Texture
glutSwapBuffers(Q);
frame_count++;
if(frame_count == 10)
{
char s[256];
time_avg /= 10.0f;
#ifdef _WIN32
sprintf_s(s, "Stereo Time: %3.3f ms/frame\n",time_avg);
#else
sprintf(s, "Stereo Time: %3.3f ms/frame\n",time_avg);
#endif
printf(s);
time_avg = 0;
frame_count = 0;

}

glutPostRedisplay();
}

void idle(void) {
glutPostRedisplay(Q);
}

void keyboard(unsigned char key, int x, int y) {
switch(key) {
case 27:

CleanupStereo();
UnregisterGLBufferForCUDA(LeftImageBuffer);
UnregisterGLBufferForCUDA(RightImageBuffer);
UnregisterGLBufferForCUDA(DispImageBuffer);
ifCuse_camera) // only need to free memory if we are using the point grey camera. Open CV

manages it's own

{
if(leftImg != NULL) free(leftImg);
if(rightImg != NULL) free(rightImg);
}
exit(0);
break;

default: break;

}
glutPostRedisplay();

