
Ray Tracing in Parallel
Jordan Sorensen

18.337 Final Project Report

Introduction
The computer graphics community has developed a variety of techniques for simulating light 

transfer in order to generate images of imagined three dimensional worlds.  From polygonal techniques 
capable of running in real time to physics-based methods that can take minutes or hours to render a 
single frame, these techniques run the gamut from fast but low quality to slow and photorealistic.  The 
recent explosion of parallel computing hardware has given ray tracing – a high quality rendering 
technique which can be easily parallelized – a leg up.  After implementing a completely serial ray 
tracer for two computer graphics classes at MIT, I decided that I'd like to bring my ray tracer up to 
speed by making it parallel.

What is a ray tracer?
A ray tracer is a program which tracks the path light takes through a scene in order to generate 

an image of that scene.  It assumes that light travels in a straight line – a ray – and that it changes 
direction when it strikes an object.  It simulates light travel by creating a ray which matches the 
direction that light is traveling in and testing all objects in the scene to see if they intersect that ray.  It 
then takes the first intersection in the scene, finds its position, and begins a new ray from this position 
in a new, “bounced” direction to simulate light bouncing off this object.  A number of extensions are 
possible to this scheme – refraction (for transparent materials like glass and water) can be achieved by 
casting rays into and through objects, and more complex surface materials can be simulated by 
bouncing multiple rays off each object.  The basic idea, however, is simple – generate many rays of 
light and find their intersection with objects in the scene.

Why is it slow?
Each time a ray is cast, we must test for its intersection with each object in the scene.  With a 

large or complex scene, this can require a lot of processing power.  On top of this, however, many 
many rays of light must be simulated – at least as many as the number of pixels in the generated image 
(which is usually on the order of tens of thousands).  These computations add up quickly, resulting in 
rendering times of minutes or hours.

How is it parallelized?
Luckily, ray tracing is an embarrassingly parallel computation.  All computations work on the 

same set of inputs – a ray and the scene description.  The scene description is a static input – it stays 
fixed throughout the computation – and the rays are generated as the program runs.  Luckily for us, no 
intercommunication is necessary between computations – the data remains completely separated until 
the very end, when results are compiled into an output image.

Project Goals
My development notebook contains a dual core processor.  However, while running my ray 

tracer in serial, only one of these cores is utilized.  I wanted to make sure that my parallel ray tracer 
would be able to use both cores.  In addition, the computer market is now incredibly parallel, and 
there's a good chance that computers I purchased in the future would contain even more processors.  As 



a result, I decided that my parallel ray tracer should be able to handle an arbitrary number of processors 
so that it would scale with this increasing computer power.

In addition, I often imagined my ray tracer being used for even bigger projects.  For example, it 
might be used to generate short animated movie clips.  This would require thousands of ray traced 
images (about thirty images for each second of video) and would take an enormous amount of time on 
a single computer, even if that computer had four or eight cores.  To render these images, I might use a 
cluster of computers, and send work computation that needed completed to each one.  To fill these 
needs, my parallel ray tracer would need the ability to be parallelized across a network as well.  I could 
even imagine trying to harness other types of computing power, such as GPUs.  In order to meet all 
these requirements – scale to an arbitrary number of processors on a single computer, use processors 
scattered across a network, and provide the ability to “plug in” a variety of other computing power, my 
design needed to be extensible.

Design
With these goals in mind, I drew out a design that I felt would be able to accommodate these 

requirements.  In my design, a single thread was the “Master” thread.  This thread didn't do any work 
on the actual scene, it simply delegated work to others.  It maintained a list of work that needed to be 
done (a list of rays which needed to be traced) as well as a list of computing power sources.  These 
computing power sources could be any of the things listed above – local processors, computers across a 
network, a GPU – as long as they met the requirements outlined in a specification.  This specification 
said that the computing power source must provide some function which took in a ray and returned the 
result of casting that ray into the scene.  The specification did not, however, say how this function must 
work.  It might start up another thread on the same computer.  It might connect to an external server 
and send the ray to the server to compute.  By specifying only the interface between the computing 
power source and the Master thread and not the implementation of this specification, I was able to 
make my design extensible.  Anything that I could write code to meet this specification with could be 
plugged into my program as a computing power source.

I mentioned above that the specification stated that each computing power source must provide 
a function which takes a ray and returns a result.  But what kind of result would it return?  It couldn't be 
the actual result of the computation – say a color, or exact number – because that would mean that the 
computing power source must compute the result before returning control to the Master thread, 
essentially serializing my design.  Instead, I created a “DelayedResult” object.  This object had two 
properties.  One, IsResultAvailable? told whether or not the result had yet been calculated.  The other, 
GetResult, got the result once it had been calculated.  Using this scheme, a computing power source 
could allow the Master thread to continue execution before it finished its computation, but the Master 
thread still had a handle- a way to get a hold of the result later one once the computation was complete.

The embarrassingly parallel nature of ray tracing also allowed me to make a few optimizations. 
Most importantly, I decided that local processors should all share the same copy of a scene.  Since they 
all had access to the same memory, they could all use the same copy in order to save data transfer time. 
Because all each processor did was read information from the scene – they never modified the scene as 
a result of their calculation – they did not need an independent copy just to avoid stepping on each 
other's toes.

Results
With this design, I could begin actually building the framework on which my ray tracer would 

operate.  I began by writing the code for the Master thread which would handle work management. 
This thread maintained a queue of work which needed to be processed, as well as a list of available 
processors.  It also had a set (but adjustable) buffer size.  This buffer size set the number of work items 
which a processor should be allowed to have unfinished at any given time.  The Master thread 



continuously looped, giving work to all processors which had fewer outstanding computations than the 
buffer size.  By keeping a large enough buffer, we guarantee that no computing power source ever runs 
out of work to do, guaranteeing good load balancing.  If we keep too large a buffer, however, load 
balancing will be off as we near the end of the computation, since the Master might run out of work to 
give one processor because it has given another too much (in order to fill its large buffer).

In my implementation, when the Master thread gives a work item to a computing power source, 
it doesn't remove that item from the queue entirely.  Instead, it pushes it to the end of the queue.  My 
hope was that this would make my ray tracer more robust to a variety of computational power sources. 
For example, a computer across a network might go down or become temporarily disconnected from 
the network.  Using this queue model, any work which was previously given to a computing power 
source will eventually be reassigned to another source if that one never returns a result.

After I finished implementation of this Master thread, I moved on to begin implementing things 
which would meet the computing power source specification.  First, I implemented a plug in for local 
processors.  This turned out to be a much more difficult task than I had anticipated.  I was using a 
library (pthreads) in order to put each computing power source on a different thread (which would 
allow them to be on different processors) which I was unfamiliar with, which added learning time to 
my development time.  In addition, after finally writing the code, a mysterious error began cropping up. 
It didn't appear every time the program was run, but a high percentage of the time, and it would cause 
the program to crash.  Finally, after many days of searching and debugging, I found the source of the 
error.  The important assumption I had made regarding scenes – that they were read-only – was actually 
slightly off.  Although the high level concept of a scene didn't change as the computation took place, 
the scene object was implemented using a low level piece of software which did change state as it was 
accessed (it contained objects which used reference counted pointers, a programming construct used to 
make sure memory is allocated and deleted when it needs to be).  Two different threads working on the 
same scene would both try to modify this low level object at the same time and cause the program to 
crash.  As a result of this discovery, I had to create a copy of the scene for each processor.

Finally, I had multiple processors up and running.  I added in a timer to see how much 
parallelization had helped and ran it on a simple scene.  Much to my dismay, the parallelized version 
actually ran slower  than the serial version.  After using a profiling tool to collect data, I finally 
determined the source of the problem – the code that managed work spent more time handing out work, 
checking to see what work was done, etc than parallelization saved.  This made some sense – I had 
used as input a very simple scene, and with such a simple scene, the cost of dividing up work was 
actually more than the cost of the work itself.  I tried again with a much more complex scene, and got 
slightly better results – the parallelized version ran ~25% faster.

Analysis
Still, after doubling the processing power accessible to my application, 25% is not a great 

increase.  Some of this cost came from my design – since I had tried to make my Master thread robust 
to many different potential kinds of processing power, it was not lightweight, and took up a decent 
amount of available processing power without achieving any actual work.  In addition, since I had to 
copy the scene file for each processor, there was additional data flow cost for each processor.

On the bright side, I feel my design met my goal of extensibility.  I was not able to implement 
the user of computational power across a network – after dealing with so many unexpected issues when 
implementing parallelization across local processors, I simply didn't have time to do this work. 
However, I feel some degree of certainty that my design would extend to this type of computational 
power relatively easily.  In addition, I was able to implement parallelization across local processors, 
and my current program will easily scale to any number of processors on a single machine.

I feel my experience parallelizing this program has reminded me that it's much more effective to 



design a system in parallel from the ground up than to take a serial system and parallelize it.  For 
example, it was very convenient to assume that my scene objects were read only, but it turned out that 
at the lowest levels, they were not.  If I had designed these constructs from the ground up with the 
parallelization in mind, I could have strictly enforced the fact that they were read only and not needed 
to make multiple scene copies.  I see many programmers today (this project included) taking the 
“parallelize” approach – they take a serial application and try to make it parallel, rather than designing 
systems in a parallel way.  For example, a lot of current research in compilers regards performing a 
complex data flow analysis on a serial program to determine what can be done in parallel.  However, 
this parallelize approach seems like it can't succeed beyond the transition phase – it may be a good way 
to take existing programs and make them fit into a new system, but when the new system is the norm, 
successful programs will be those developed with this new paradigm in mind.

Future Work
Although I hope to eventually finish the goals I originally set out for this project (including 

networked parallelization, and GPU use) I'd first like to start my ray tracer over again, this time 
designing it knowing that it will be executed in parallel.  I hope that this will help me achieve a nearly 
100% increase in speed (corresponding to 100% increase in available processor power) when adding a 
second processor, as opposed to the 25% increase I currently experience.

In the interest of decreasing the ratio between actual work and “maintenance” overhead, I might 
also consider changing the level at which I am parallelizing.  For example, instead of giving each 
computing power source a ray to trace, I might give it an entire block of pixels to trace rays through. 
This way, the computing power source has a larger amount of work to do before it must report its 
results back or get more work from the Master.


