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Introduction:

Electrical engineers use circuit simulation software extensively to help with design verification.  My 

thesis  research  involves  the  development  of  a  high  efficiency  solar  inverter.   The  design  of  this 

particular circuit needs to be verified at several dozen operating points, and each simulation takes about 

ten minutes.  The software being used is called LTspice IV, which is freeware provided by Linear 

Technologies.  The new version was released in January, and boasts that it “features multi-threaded 

solvers designed to better utilize current multicore processors.”  Cadence, a company that sells circuit 

design and simulation software, also recently unveiled a new parallelized simulator.  

The aim of this project was to learn more about how the software works, and how it can be 

parallelized.  The circuits that are being simulated involve components that store energy and nonlinear 

switches, which means a transient analysis is necessary.  A transient analysis is performed by using 

numeric integration methods (trapezoidal rule) to keep track of the state of various components as a 

function of time.  This requires that a nonlinear system of equations be solved at every time step.  The 

duration between time steps will vary to boost simulation speed and accuracy.  

The Newton method is  used to solve the nonlinear system at each time step.   The Newton 

method involves  making  a  guess  at  the  operating  point,  linearizing  the  system around  that  point, 

solving  the  system,  and  then  readjusting  the  operating  point,  relinearizing,  and  resolving  until 

reasonable convergence occurs.   This means that for a given time step, multiple linear systems of 

equations must be solved.

LU Factorization:

At each time step, an LU factorization of the circuit description matrix is performed, since Newton's 

method involves solving Ax=b for varying b until convergence.  The LU factorization turns out to be 

the  most  time consuming part  of  a  circuit  simulation,  and significant  research has  been  dedicated 

towards optimizing the speed of LU factorization algorithms.  Timothy Davis at  the University of 

Florida developed the KLU algorithm, an LU factorization algorithm specifically optimized for circuit 

description matrices, which are typically highly sparse, and have a mostly zero-free diagonal.

The goal of this project was to study KLU, implement it serially, and explore ways to parallelize 

aspects  of  the  algorithm.   KLU  is  published  in  a  package  called  SuiteSparse,  which  I  installed 



successfully, and used as a baseline for comparison with parallel improvements that I hoped to make.

The KLU algorithm can be described as a series of preprocessing steps, followed by the actual 

factorization  step.   The  performance  is  evaluated  as  the  sum of  the  time  it  takes  to  perform the 

preprocessing, factorizing, and solving of the sparse linear system.

The preprocessing steps involve permuting the matrix to block upper triangular form (BTF) and 

using an Approximate Minimum Degree (AMD) algorithm to reduce the order of each block.  The 

preprocessed matrix is then LU factorized using the Gilbert/Peierls' left looking algorithm with partial 

pivoting, and the matrix is solved 

The first step in the KLU algorithm is to permute the matrix to block upper triangular form 

(BTF).  This is followed by using the Approximate Minimum Degree (AMD) algorithm to reduce the 

fill  in  each  block.   After  these  preprocessing  steps,  the  factorization  is  performed  using  the 

Gilbert/Peierls' left looking algorithm with partial pivoting.

BTF:

My stated goal was to parallelize KLU, an algorithm that is made up of several discrete steps.  Because 

the steps are sequential, I decided to focus on parallelizing each step, starting with BTF.  BTF itself is 

an algorithm that  is  broken down into two discrete  steps.   The first  step is  to  compute a column 

permutation to minimize the number of zeros on the diagonal.   This is referred to as a maximum 

transversal.  The second step computes a permutation of the matrix to upper block triangular form.  The 

algorithms for performing these two steps are derived from graph theory.  

Maximum Transversal:

The  maximum  transversal  problem  can  be  expressed  as  trying  to  find  a  maximum  match  of  a 

undirected bipartite graph.  In other words, we are looking for a mapping from an old location to a new 

location for each column.  Physically, the mapping is a vector of column indices.  

The maximum transversal algorithm adopted by Timothy Davis is based on ACM Algorithm 

575.    This algorithm is designed to find a maximum match as quickly as possible.  The search starts 

off by permuting the first column (0) to a new index (i) based on the location of the first nonzero row 

(i).  The same is done for a second column, ensuring that each column is assigned to one (and only one) 

index.  The algorithm is more reflective of a depth first search through a directed graph where a column 

(i) is a node, and a directed edge is drawn from every nonzero row (j) in the column (i) to every new 

column (j).



Strong Components:

After finding the maximum transversal, the matrix must be permuted to upper block triangular form. 

This form is described as a matrix with blocks along the diagonal, and all entries below the diagonal 

being zero.  Finding the upper block triangular permutation boils down to another graph problem that is 

quickly and efficiently solved with a depth first search.  A graph can be drawn where each node (i) 

represents a diagonal at (i,i).  Edges are drawn from node i to node j, given that the element at (i,j) is 

nonzero.  The necessary permutation is discovered by finding the strong components of the graph.

A subgraph is strongly connected if a path can be found from any node to any other node.  A 

strong component of a directed graph is a strongly connected subgraph that cannot be expanded.  Each 

strong component of a graph is a block of the upper block triangular form.

The algorithm used by Timothy Davis is based on ACM Algorithm 529.  Generally it involves a 

depth first search to find a cycle, which is by definition strongly connected.  All nodes in the cycle are 

then represented as a single node, and the depth first search continues to try to find a bigger cycle.  

AMD and Gilbert/Peierls:

Because of time constraints, the algorithms for finding an approximate minimum degree for each block 

and for performing the LU factorization were not fully explored. It was clear from documentation and 

preliminary studies of the algorithms that depth first search is used over and over again, both in AMD 

as a postprocessing step, and during the LU factorization step.  The algorithms are based on finding a 

match or a path in a graph description of a sparse matrix, and since we are optimizing for speed to a 

solution and efficiency, depth first search is used.

Parallelization:

It is theoretically possible to speed up KLU by taking advantage of parallel processors.  We could 

describe KLU more simply as a sequence of depth first searches.  The speed of a depth first search can 

be improved by using multiple processors to search a tree at the same time, as long as we can easily 

ensure that the different processors search different spaces of the search tree at any given time.  Parallel 

DFS was explored by Jon Freeman at the University of Pennsylvania.

With the parallel programming tools (Star-P) available to us, ensuring that each processor is 

searching a different space, or setting different search rules is not possible (i.e. “always pick the first 

branch”  or  “always  pick  the  last  branch”).  It  is  possible  to  achieve  an  approximation  of  this  by 

randomly selecting which branch to iterate through or randomly selecting a uniform branching rule.

In the algorithm, we sacrifice some time to generate random permutations of which branch to 



iterate through, in the hope that if 8 or 16 processors are doing the same thing, a solution will be found 

more quickly on average than a single processor using a single branching rule.  We can only expect a 

win with a randomized algorithm if we know that the depth first search involves a fair amount of 

backtracking.  Otherwise, the extra memory and extra assignments are not worth the hassle.

The speed of a depth first search can be improved by using multiple processors and ensuring 

that the processors are searching different spaces of the tree.  When a solution is found, the solution 

should be broadcast to all the processors and they should move on to the next step (in this case, finding 

the block upper triangular permutation).  

This approach to depth first search is similar to a Las Vegas algorithm, where a solution to a 

problem is  guaranteed,  but  the time to  reach  the solution takes  a  varying amount  of  time (whose 

distribution is known).  This is as opposed to a Monte Carlo algorithm, where the time is known, but 

the function will give a right or wrong answer with a known probability.

Implementation and Analysis:

I implemented a randomized version of the maximum transversal algorithm by making modifications to 

the Matlab/C code published by Timothy Davis.  I tested the speed of the original and randomized 

maximum transversal  algorithm on circuit  simulation matrices available  from Davis'  website.   The 

randomized algorithm was sometimes faster for a small percentage of the matrices.  In general, the 

randomized algorithm was anywhere from 2 to 10 times slower.  This indicates that the maximum 

transversal search does not involve significant backtracking, and as a result, is probably not the best 

function to try to parallelize.  It is possible that one or several of the depth first search speeds for BTF, 

AMD post-processing,  and the LU factorization could be improved by using a  parallel  Las  Vegas 

approach.

Conclusions:

My lack of experience with graph theory, linear algebra, and algorithms slowed my progress on this 

project.   I  learned a lot  about how circuit  simulators work,  how sparse matrices are analyzed and 

manipulated so that they can be solved quickly, and how the associated algorithms take advantage of 

graph theory.  Unfortunately, in this case, parallelization of the maximum transversal did not present an 

improvement  in  performance.   Obviously,  further  research  can  be  done  to  explore  whether 

parallelization of the other depth first searches built into the KLU algorithm will help.
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