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Abstract 
 

The scaling of serial algorithms cannot rely on the 

improvement of CPUs anymore. The performance of 

classical Support Vector Machine (SVM) 

implementations has reached its limit and the arrival 

of the multi core era requires these algorithms to adapt 

to a new parallel scenario. Graphics Processing Units 

(GPU) have arisen as high performance platforms to 

implement data parallel algorithms. In this paper, it is 

described how a naïve implementation of a multiclass 

classifier based on SVMs can map its inherent degrees 

of parallelism to the GPU programming model and 

efficiently use its computational throughput. Empirical 

results show that the training time of the classifier can 

be reduced an order of magnitude compared to a 

classical solver, LIBSVM, while guaranteeing the same 

accuracy. 

 

1. Introduction 
 

Since the semiconductor industry revealed that 

physical constraints were imposing an unbeatable 

upper frequency limit for processors, the computing 

market has been continuously supplied with multi-

core, multi-processor, and most recently GPU and 

multi-GPU architectures. This shift to parallel 

architectures was initially ignored, but the demand for 

performance and scalability eventually has required 

adapting not only new algorithms, but also old 

methods to the new existing panorama. Unfortunately, 

not all the algorithms see their performance enhanced 

by parallel architectures, but those that do, often called 

data parallel algorithms [1], can be greatly benefited 

by their adaptation to this new scenario. 

Support Vector Machines [2] (SVM) is a learning 

algorithm that can be conveniently adapted to parallel 

architectures. Its success solving classification tasks in 

a wide variety of fields such as text or image 

processing and medical informatics, have stimulated 

research not only on their generalization performance, 

but also in their execution performance and scalability. 

Nevertheless, the training phase of a SVM is a 

computationally expensive task. The training time of a 

binary tasks composed of 100.000 points with tens of 

dimensions can often take on the order of hours of 

serial execution. 

The efforts to reduce training time have been 

numerous and effective. Osuna et al. presented a 

decomposition approach that enabled tackling larger 

problems by solving sub-problems iteratively [3]. 

Joachims’ introduced additional techniques such as 

shrinking and kernel caching that are common practice 

today [4]. Platt presented the Sequential Minimal 

Optimization (SMO) algorithm, which decomposed the 

QP problem into a series of smaller QP sub problems 

that were solvable analytically without the need of the 

time consuming QP optimization [5]. More recently, 

Fan et al. developed a series of working set selection 

heuristics that lead the SMO algorithm to a faster 

convergence [6]. The combination of these 

distributions has enabled fast serial SVM 

implementations. 

 Efforts have not only been focused on the 

development of techniques to accelerate “serial” 

SVMs; there are several initiatives that seek to achieve 

performance gains by either parallelizing the algorithm 

to fit in new architectures (PSVMs), distributing the 

classification problem across nodes in a cluster 

(DSVMs), or a hybrid of both. Cao et al. [7] present a 

parallel version of the SMO algorithm that divides the 

large dataset into smaller subsets where Platt’s SMO is 

applied. Considerable performance gains are reported 

when executing this approach on multiprocessors 

machines that use MPI for communication. Similarly, 

Zanni et al. explored an iterative decomposition 

technique that would use both storage and computing 

resources available in multiprocessor systems [8]. Graf 

et al. designed the Cascade SVM, an algorithm that 

distributed the classification task into a cascade top-

down network topology [9]. This was the first initiative 

to include network topologies in DSVM problems. 

Finally, Lu et al. [10] present their DPSVM approach, 

which follows the basic principles of the Cascade SVM 

but generalizes the distributed classification problem 

for general strongly connected network topologies and 

provides a convergence proof for them.    
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There is little work on how SVM algorithms map to 

GPU architectures. Their computational, memory and 

host - device or device - device communication 

possibilities seem to provide a convenient platform for 

the execution of the entire range of SVM alternatives, 

from simple individual SVMs to complex DPSVM 

network configurations. Catanzaro et al. [11] presented 

a pioneer implementation of a binary SVM on a 

Graphics Processing Unit (GPU), and reported 

promising speed ups (5-32x) over LIBSVM [12].  

In this paper, we continue the research direction 

opened by Catanzaro et al. and implement a multi-class 

classifier on a GPU. This work shows that the 

resources and degrees of parallelism provided by a 

GPU can be conveniently exploited to train large scale 

multiclass classification tasks. Although there are a 

variety of methods to solve the SVM training problem, 

SMO algorithm was chosen for its popularity and more 

importantly, because it defines data reusability patterns 

that can be efficiently exploited by the GPU. 

The organization of this paper is as follows. Section 

2, briefly introduces the SVM training and 

classification problem for binary tasks and problems 

with multiple classes. Section 3 gives an overview of 

the GPU architecture and programming model. Section 

4 describes the Parallel SMO algorithm, the motivation 

to execute binary tasks concurrently, along with the 

details of our implementation. The performance results 

of our multiclass classifier are compared with 

LIBSVM in Section 5. Section 6 gives the conclusions 

of this project and section 7 discusses future work.      

 

2. Multiclass Classification 
 

This section succinctly reviews the basic principles 

of soft-margin binary SVM classification and its 

combination to solve multiclass classification 

problems. 

  

2.1. Binary SVM 
 

The binary classification problem is defined as 

finding the classification function that solves the 

following regularized learning problem: Given 𝑙 
examples  𝑥 1 , 𝑦1 ,… ,  𝑥 𝑙 , 𝑦𝑙  with 𝑥 𝑖 ∈ 𝑅𝑛  and 

𝑦𝑖 ∈   −1,1  ∀𝑖. 

min
𝑓∈𝐻

𝐶 𝑉(𝑦𝑖 , 𝑓(𝑥 𝑖))

𝑙

𝑖=1

+
1

2
 𝑓 𝐾

2  (1)  

where the regularization is controlled via 𝐶. Classical 

SVM arises by considering a specific loss function: 

𝑉 𝑦𝑖 , 𝑓 𝑥 𝑖  = (1 − 𝑦𝑓(𝑥 ))+ (2)  

where (𝑘)+ = max⁡(𝑘, 0). Then slack variables 𝜉𝑖  are 

introduced to overcome the problem introduced by its 

non-differentiability: 

min
𝑓∈𝐻

𝐶 𝜉𝑖

𝑙

𝑖=1

+
1

2
 𝑓 𝐾

2  (3)  

subject to: 𝑦𝑖𝑓 𝑥𝑖 ≥ 1 − 𝜉𝑖  and 𝜉𝑖 ≥ 0 𝑖 = 1,… , 𝑙. 
 

The dual form of this problem is given by: 

max
𝛼∈𝑅𝑙

 𝛼𝑖 −
1

2

𝑙

𝑖=1

𝛼𝑇𝐾𝛼 (4)  

subject to:  𝑦𝑖𝛼𝑖 = 0𝑙
𝑖=1  and 0 ≤ 𝛼𝑖 ≤ 𝐶 𝑖 = 1,… , 𝑙.  

where 𝐾𝑖𝑗 =  𝑦𝑖𝑦𝑗 k(𝑥 𝑖 , 𝑥 𝑗 ) is a kernel function. (4) is a 

quadratic programming optimization problem. 

Common kernel functions are shown in Table 1. 

 
Table 1: Kernel functions 

Solving (4) defines the classification function: 

𝑓 𝑥 =  𝑦𝑖𝛼𝑖k(𝑥 , 𝑥 𝑖)

𝑙

𝑖=1

+ 𝑏 (5)  

where 𝑏 is an unregularized bias term. 

 

2.2. Multiclass SVM 
In multiclass classification given 𝑙 examples 

 𝑥 1, 𝑦1 ,… ,  𝑥 𝑙 , 𝑦𝑙  with 𝑥 𝑖 ∈ 𝑅𝑛 , 𝑦𝑖 ∈  𝑌 ∀𝑖 and 

𝑌 =  1, . . ,𝑀  the goal is to design a classifier that 

predicts the label of new unseen samples. Classical 

approaches construct the multiclass classifier as the 

combination of  𝑁 independent binary classification 

tasks. Binary tasks are defined in the output code 

matrix 𝑅 of size 𝑀 x 𝑁, where 𝑀 is the number of 

classes and 𝑁 is the number of tasks, and 𝑅𝑖𝑗 ∈

{−1,0,1}. Each column in 𝑅 represents how original 

labels are translated into binary labels for each specific 

binary task. Then each 𝑓𝑘(𝑥 ) is trained separately with 

 𝑥 1 ,𝑅𝑦1𝑘 ,… ,  𝑥 𝑙 ,𝑅𝑦𝑙𝑘
  where 𝑘 = 1. .𝑁. The outputs 

of trained binary classifiers 𝑓 𝑘(𝑥 ) are used to predict 

the class label that best agrees with the binary 

predictions: 

𝑦 = argmax
𝑦∈𝑌

  𝑅𝑦𝑘𝑓 
𝑘(𝑥 )

𝑁

𝑘=1

  (6)  

 

Linear k 𝑥 𝑖 , 𝑥 𝑗  = 𝑥 𝑖𝑥 𝑗  

Polynomial k 𝑥 𝑖 , 𝑥 𝑗  = (𝑎𝑥 𝑖𝑥 𝑗 + 𝑏)𝑑  

Radial Basis k 𝑥 𝑖 , 𝑥 𝑗  = 𝑒−𝛽   𝑥 𝑖−𝑥 𝑗 
2

  

Sigmoid k 𝑥 𝑖 , 𝑥 𝑗  = 𝑡𝑎𝑛ℎ(𝑎𝑥 𝑖𝑥 𝑗 + 𝑏) 
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In general, predictions can be derived from output 

codes by specifying a loss function: 

𝑦 = argmin
𝑦∈𝑌

  𝐿𝑜𝑠𝑠(𝑅𝑦𝑘 ,𝑓 
𝑘 𝑥  )

𝑁

𝑘=1

  (7)  

The common types of output codes are: 

 One-vs-All (OVA): 𝑀 classifiers are needed. For 

the 𝑓𝑖(𝑥 ) classifier, the positive examples are all 

the points in class 𝑖, and the negative samples all 

the points not in class 𝑖.  

 All-vs-All (AVA):  𝑀
2
  classifiers are needed, one 

classifier to distinguish each pair of classes 𝑖 and 𝑗. 
𝑓𝑖𝑗 (𝑥 ) is the classifier where class 𝑖 has positive 

samples and class 𝑗 negative. 

 Error correcting codes: Often error correcting 

codes are applied to reconstruct labels from noisy 

predicted binary labels.   

 

3. General Purpose GPU 
 

The popularity and relatively low price of graphics 

processors have motivated many programmers to use 

GPUs for scientific computing. Even though they were 

designed specifically for triangle rasterization, today 

they have evolved to serve general purpose 

computation needs. Since NVIDIA released Compute 

Unified Device Architecture (CUDA) [13] in 2007, a 

variety of parallel programs have been developed for a 

variety of different applications, including fluid 

dynamics, finance or imaging. The key to CUDA’s 

success are three abstractions that can be integrated 

using extensions to conventional C code [14]: (1) The 

hierarchy of thread groups, (2) shared memory, and (3) 

barrier synchronization.  The combination of multiple 

levels of threads, a memory hierarchy and 

synchronization mechanisms enable achieving fine-

grained data parallelism which can be conveniently 

interleaved with coarse-grained data parallelism and 

task parallelism.  

Nevertheless, GPUs do not speed up all possible 

applications. The algorithms need to explicitly express 

parallelism by the execution of thousands of threads, so 

that available resources in the GPU are efficiently 

occupied. Fortunately, machine learning algorithms are 

typically composed by primitives that are highly 

parallelizable [15]: (1) Inner products, (2) outer 

products, (3) linear algebra, (4) the application of non-

linearities to vectors or matrices, and (5) matrix 

transposes. 

  In November 2006, NVIDIA presented the Tesla 

architecture, a massively multithreaded processor array 

capable of concurrently executing tens of thousands of 

threads [16]. This architecture was designed for 

computation rather than control flow and caching, and 

one of its state-of-the art devices reported almost a 

Teraflop of processing power which is over an order of 

magnitude larger than the latest CPUs existing today. 

Furthermore, this high throughput in floating point 

computation, along with abundant memory at each 

layer the hierarchy model and communication through 

fast memory bandwidth have yield to promising 

acceleration results. 

Next the CUDA programming model and the 

memory model are briefly introduced. 

 

3.1. CUDA Programming Model 
 

The CUDA programming model is based on a 

logical representation composed by three elements: 

grids, blocks and threads. This logical representation is 

generated by the user, and CUDA maps this 

representation to the real hardware representation 

underneath.  This separation between the logical and 

physical representations allows algorithms scaling as 

the newest GPUs increase their capabilities. 

As a first step, it is programmer’s task to adapt the 

algorithm to a 2D grid structure. Grid executions, 

known as kernel calls, are sequentially invoked by the 

host. Grids are composed by blocks, which are groups 

of threads that share local memory and can be 

synchronized using barriers. Similarly, threads in a 

block are organized in 3D. The logical representation is 

illustrated in Figure 1. 

The maximum size of each dimension of a block is 

(512, 512, 64), but the maximum number of threads in 

a block cannot exceed 512. The maximum size of each 

Figure 1: Logical Representation 
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dimension of a grid is (65535, 65535). The blocks in a 

grid are launched in parallel, which allows a large 

number of threads being executed in parallel. The 

number of threads that run simultaneously on a block, 

which is called warp, and the number of blocks that 

run simultaneously on a grid are hardware 

implementation specific and depend on the number of 

Stream Multiprocessors (SMs) and Stream Processors 

(SPs) available in the device. The number of SMs and 

SPs increases every generation. 

Consequently, developers need to find an 

appropriate partitioning of the data that occupies the 

maximum number of blocks possible, and hence utilize 

hardware resources uninterruptedly, in order to get 

maximum acceleration of the algorithm. 

 

3.2. CUDA Memory Model 
 

CUDA provides a hierarchy of memories that differ on 

their accessibility, operability and speed. These 

memories are illustrated in Figure 2. 

 Registers: The smallest but fastest memory 

available. It is only accessible at the thread level 

with Read/Write operations. 

 Shared Memory: Slightly slower than registers. It 

is shared by all the threads in a block, and allows 

Read/Write operations. 

 Global Memory: The largest but slowest memory 

available. Accessible by all the threads executed in 

the grid, and allows Read/Write operations. 

 Constant Memory: It is faster than global memory, 

and similarly is accessible at the grid level, but is 

Read only. 

Latest generations of GPUs provide 102GB/s 

memory bandwidth on the GPU and 8GB/s for 

communication with the CPU across the PCI-express 

bus. 

 
Figure 2: Memory Model 

 

4. Multiclass SVM Implementation 
 

Each of the 𝑁 binary tasks is trained using the 

Sequential Minimal Optimization (SMO) algorithm, 

which solves equation (4). SMO solves very large 

quadratic programming (QP) optimization problems by 

breaking it into a series of smaller QP sub problems. 

These QP sub problems can be solved analytically 

without the need of numerical optimization. In order to 

adapt the algorithm to the CUDA programming model, 

the Parallel SMO (PSMO) version of the algorithm 

was implemented [7].  

In this section, the PSMO algorithm is described. 

Next, its mapping to grids, blocks and threads is 

explained.  Finally, the implications of the execution of 

𝑁 PSMO instances in parallel are analyzed. 

 

4.1. Parallel SMO Algorithm 
Cao et al. designed the PSMO algorithm aiming to 

accelerate the binary SVM training time by partitioning 

the algorithm across multiple processors. Their 

experiments reported considerable speedups while 

maintaining the accuracy of the sequential SMO. Next, 

this algorithm is explained: 

Since, 𝑁 binary tasks need to be executed, the 

correspondence between an instance of the PSMO 

algorithm and a binary task is represented by the 

superscript 𝑘, where 𝑘 = 1. .𝑁. Given 𝑃 processing 

units per binary task, the sample dataset 𝑙 is partitioned 

in 𝑃 subsets and one subset is given to each processing 

unit. The subsets are represented by  𝑙𝑝   𝑝 = 1…𝑃, 

where  𝑙𝑝𝑃
𝑝=1 = 𝑙. 

 

We follow the following notation: 

𝐼0
𝑘 =  𝑖: 𝑦𝑖

𝑘 = 1, 0 < 𝛼𝑖
𝑘 < 𝐶  

∪  𝑖: 𝑦𝑖
𝑘 = −1, 0 < 𝛼𝑖

𝑘 < 𝐶  
(8)  

 

𝐼1
𝑘 =  𝑖: 𝑦𝑖

𝑘 = 1,𝛼𝑖
𝑘 = 0  (9)  

𝐼2
𝑘 =  𝑖: 𝑦𝑖

𝑘 = −1,𝛼𝑖
𝑘 = 𝐶  (10)  

𝐼3
𝑘 =  𝑖: 𝑦𝑖

𝑘 = 1,𝛼𝑖
𝑘 = 𝐶  (11)  

𝐼4
𝑘 =  𝑖: 𝑦𝑖

𝑘 = −1,𝛼𝑖
𝑘 = 0  (12)  

 

Each of the 𝑝 subsets of a task 𝑘 will have its own 

set of variables: 

𝑓𝑖
𝑝 ,𝑘

=  𝛼𝑗
𝑘𝑦𝑗

𝑘𝑘 𝑥 𝑗 , 𝑥 𝑖 −  𝑦𝑖
𝑘

𝑙

𝑗=1

 (13)  

 

𝑏𝑢𝑝
𝑝 ,𝑘

= min 𝑓𝑖
𝑝 ,𝑘

: 𝑖 ∈ 𝐼0
𝑘 ∪ 𝐼1

𝑘 ∪ 𝐼2
𝑘 ∪  𝑙𝑝  (14)  
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𝐼𝑢𝑝
𝑝 ,𝑘

= argmin
𝑖

𝑓𝑖
𝑝 ,𝑘

 (15)  

 

𝑏𝑙𝑜𝑤
𝑝 ,𝑘

= max 𝑓𝑖
𝑝 ,𝑘

: 𝑖 ∈ 𝐼0
𝑘 ∪ 𝐼3

𝑘 ∪ 𝐼4
𝑘 ∪ 𝑙𝑝  (16)  

 

𝐼𝑙𝑜𝑤
𝑝 ,𝑘

= argmax
𝑖

𝑓𝑖
𝑝 ,𝑘

 (17)  

 

Global variables representing the entire dataset can 

be obtained from the subset variables: 

 

𝑏𝑢𝑝
𝑘 = min{𝑏𝑢𝑝

𝑝 ,𝑘
} (18)  

 

𝐼𝑢𝑝
𝑘 =  arg

𝐼𝑢𝑝
𝑝 ,𝑘

𝑏𝑢𝑝
𝑘  

(19)  

 

𝑏𝑙𝑜𝑤
𝑘 = max{𝑏𝑙𝑜𝑤

𝑝 ,𝑘
} (20)  

 

𝐼𝑙𝑜𝑤
𝑘 =  arg

𝐼𝑙𝑜𝑤
𝑝 ,𝑘

𝑏𝑙𝑜𝑤
𝑘  

(21)  

 

𝐼𝑢𝑝
𝑘  and 𝐼𝑙𝑜𝑤

𝑘  are the indices of the two weights 𝛼𝑖
𝑘  

of the smallest QP sub problem and they can be solved 

analytically:  

𝛼𝐼𝑢𝑝

𝑛𝑒𝑤 ,𝑘 =  𝛼𝐼𝑢𝑝

𝑜𝑙𝑑 ,𝑘 −  
𝑦𝐼𝑢𝑝
𝑘 (𝑓𝐼𝑙𝑜𝑤

𝑜𝑙𝑑 ,𝑘 − 𝑓𝐼𝑢𝑝
𝑜𝑙𝑑 ,𝑘)

𝜂
 (22)  

 

𝛼𝐼𝑙𝑜𝑤

𝑛𝑒𝑤 ,𝑘 =  𝛼𝐼𝑙𝑜𝑤

𝑜𝑙𝑑 ,𝑘 +  𝑠(𝛼𝐼𝑢𝑝

𝑜𝑙𝑑 ,𝑘 − 𝛼𝐼𝑢𝑝

𝑛𝑒𝑤 ,𝑘) (23)  

 

where 

𝑠 = 𝑦𝐼𝑢𝑝
𝑘 𝑦𝐼𝑙𝑜𝑤

𝑘  (24)  

𝜂 = 2𝑘  𝑥 𝐼𝑙𝑜𝑤 , 𝑥 𝐼𝑢𝑝   

−𝑘 𝑥 𝐼𝑙𝑜𝑤 , 𝑥 𝐼𝑙𝑜𝑤  − 𝑘  𝑥 𝐼𝑢𝑝 , 𝑥 𝐼𝑢𝑝   
(25)  

 

𝛼𝐼𝑢𝑝

𝑛𝑒𝑤 ,𝑘
and 𝛼𝐼𝑙𝑜𝑤

𝑛𝑒𝑤 ,𝑘
 need to be clipped to  0,𝐶 .  

After optimizing the weights the error on the 

𝑖𝑡ℎdata pattern, 𝑓𝑖
𝑝 ,𝑘

 needs to be updated: 

 

𝑓𝑖
𝑝 ,𝑛𝑒𝑤 ,𝑘

= 𝑓𝑖
𝑝 ,𝑜𝑙𝑑 ,𝑘

+  𝛼𝐼𝑙𝑜𝑤

𝑛𝑒𝑤 ,𝑘 − 𝛼𝐼𝑙𝑜𝑤

𝑜𝑙𝑑 ,𝑘 𝑦𝐼𝑙𝑜𝑤
𝑘 𝑘 𝑥 𝐼𝑙𝑜𝑤 , 𝑥 𝑖 

+  𝛼𝐼𝑢𝑝

𝑛𝑒𝑤 ,𝑘 − 𝛼𝐼𝑢𝑝

𝑜𝑙𝑑 ,𝑘 𝑦𝐼𝑢𝑝
𝑘 𝑘  𝑥 𝐼𝑢𝑝 , 𝑥 𝑖  

(26)  

 

The iterative algorithm is summarizes as follows: 

 

 

 

 

 

 

Finally the offset for each task 𝑘 is calculated: 

𝑏𝑘 =
𝑏𝑢𝑝
𝑘 + 𝑏𝑙𝑜𝑤

𝑘

2
 (27)  

 

4.2. PSMO Implementation on GPU 
For a GPU implementation, there is a natural 

mapping between the execution of 𝑁 PSMO algorithm 

instances and the grid structure defined by the CUDA 

programming model. Given 𝑃 processing units and 𝑁  

binary tasks, a grid composed by 𝑃𝑥𝑁 blocks can be 

used to execute the most computationally expensive 

steps of the training phase.  

The horizontal dimension of the grid is partitioned 

into 𝑃 blocks, and each block 𝑝 will process a subset 

𝑙𝑝  of the training samples. Each sample  𝑖 within a 

block is handled by a single thread. Threads within a 

block are organized in a single dimension. The vertical 

dimension of the grid indicates the task 𝑘 that is 

processed by the block. 

Blocks in the same column of the grid share the 

same training samples, but since they belong to 

different tasks they will have different labels.  

Rows of the grid represent an instance of the PSMO 

algorithm. A single instance of the PSMO algorithm is 

illustrated in Figure 4.  

The computation of the subset variables is carried 

out by executing 𝑃 blocks in parallel in the GPU. 

Given the fact that the number of subset variables is 

reduced, calculating global variables in the host results 

in better performance that its calculation on the GPU. 

Global variables are then used to compute the 

weights 𝛼𝐼𝑢𝑝
𝑘 ,𝛼𝐼𝑙𝑜𝑤

𝑘 . Since this step involves kernel 

Initialize: 

 𝛼𝑖
𝑘 = 0, 𝑓𝑖

𝑝 ,𝑘
= − 𝑦𝑖

𝑘,𝑖 ∈ 𝑙𝑝 ,  

 𝑝 = 1…𝑃, 𝑘 = 1…𝑁 
Calculate: 

 𝑏𝑢𝑝
𝑝 ,𝑘
, 𝐼𝑢𝑝

𝑝 ,𝑘
, 𝑏𝑙𝑜𝑤

𝑝 ,𝑘
, 𝐼𝑙𝑜𝑤

𝑝 ,𝑘
,𝑝 = 1…𝑃, 𝑘 = 1…𝑁 

Obtain: 

 𝑏𝑢𝑝
𝑘 , 𝐼𝑢𝑝

𝑘 ,𝑏𝑙𝑜𝑤
𝑘 , 𝐼𝑙𝑜𝑤

𝑘 , 𝑘 = 1…𝑁 
 

Iterate task 𝑘 until 𝑏𝑙𝑜𝑤
𝑘 > 𝑏𝑢𝑝

𝑘 + 2𝜏 

Optimize 𝛼𝐼𝑢𝑝
𝑘 ,𝛼𝐼𝑙𝑜𝑤

𝑘  

Update 𝑓𝑖
𝑝 ,𝑘
 , 𝑝 = 1…𝑃 

Calculate 𝑏𝑢𝑝
𝑝 ,𝑘
, 𝐼𝑢𝑝

𝑝 ,𝑘
, 𝑏𝑙𝑜𝑤

𝑝 ,𝑘
, 𝐼𝑙𝑜𝑤

𝑝 ,𝑘
,  𝑝 = 1…𝑃 

Obtain 𝑏𝑢𝑝
𝑘 , 𝐼𝑢𝑝

𝑘 ,𝑏𝑙𝑜𝑤
𝑘 , 𝐼𝑙𝑜𝑤

𝑘  

Repeat 

Figure 3: PSMO algorithm 
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evaluations, it needs to be carried out in the GPU. 

After the weights have been updated, 𝑃 blocks are 

executed to calculate the new 𝑓𝑖
𝑝 ,𝑘

 values. Finally, the 

stop criterion is checked to determine whether the 

PSMO instance has converged or needs to proceed to a 

new iteration. 

 

  

4.3. Task Parallelization Implications 
Although binary tasks are independently trained, 

there are two direct implications associated to their 

parallel execution: 

 

4.3.1. Cross-Task Kernel Caching: As the 

dimensionality of the samples increases, kernel 

evaluations become the most computationally 

expensive step of SVM training. Since SMO algorithm 

focuses on finding and optimizing non-zero weights, 

the algorithm tends to demand the same rows of the 

Gram matrix K several times as it approaches 

convergence. For large datasets, it is not feasible to 

store the entire matrix K on memory; hence it is a 

common practice to implement kernel caching 

mechanisms that exploit the reusability of rows in 

matrix K. SVMLight uses an LRU caching strategy [4].  

The concurrent execution of multiple binary tasks 

that share the same memory allows different tasks 

sharing kernel evaluations. If a training sample is 

found to be a support vector in more than one task, a 

single kernel evaluation will be shared among those 

tasks and the kernel cache hit rate will increase. A 

representation of support vectors being shared among 

tasks is illustrated in Figure 6. Our implementation 

exploits this beneficial property. Similarly, if multiple 

tasks need to evaluate the same non-cached row of 

matrix K in the same iteration, the row is evaluated 

once and shared with the others avoiding multiple 

evaluations. Empirical results are presented in Section 

V.  

In cache miss situations, new rows of the Gram 

matrix are calculated using CUDA Basic Linear 

Algebra Subroutines (CUBLAS), which provide 

optimized functions for matrix-vector multiplications 

[17]. The optimization of these routines has been 

confirmed by [18] 

 4.3.2. Progressive Grid Reduction: Each of the 𝑁 

binary tasks has different convergence rates. If any of 

the tasks has already converged, a fixed 𝑃𝑥𝑁 grid 

would require launching idle rows of blocks. Even if 

passive blocks do not need to run, they would require 

to be assigned to the underlying hardware like the rest 

of blocks.  Consequently they would hold GPU 

resources and delay the execution of non-converged 

blocks. Hence, it is recommended dynamically 

reducing the vertical dimension of the grid as binary 

tasks converge.   

5. Performance Results 
 

This section presents the performance results of 

executing this GPU implementation of the multiclass 

Figure 4: Parallel SMO for a single binary task 

Figure 6: Shared SVs (red). AVA (Left), OVA (Right) 

Figure 5: Dynamic Grid Reduction 
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classifier, compared with LIBSVM. For both cases, the 

same kernel type, regularization parameter 𝐶, and 

stopping criteria is used. LIBSVM is also based on the 

SMO algorithm. It uses the AVA output code for 

multiclass classification and executes binary tasks 

sequentially [19]. Both the LIBSVM cache size and the 

GPU implementation kernel cache size were set to be 

of equal size, 2GB. 

In this section prediction performance was not 

considered. The author believes that prediction 

performance depends directly on the optimization of 

the kernel evaluation, which can be efficiently done 

using CUBLAS Library. 

 

5.1. Host and Device 
The specifications of the hardware used for the 

experiments in this section are presented in Table 2. 

 

Table 2: Host and Device Specifications 

5.2. Datasets 
The GPU implementation was tested on well 

known datasets. Initially, Adult dataset [20] was used 

to test the correctness of single binary classifications 

tasks. Then, MNIST dataset [21] was used to analyze 

the performance in multiclass problems. The sizes of 

these datasets and the parameters used for training are 

indicated in Table 3. 

 

Dataset 
# 

Training 
Points 

# 
Testing 
Points 

# 
Features 

# 
Classes 

C β 

Adult  32,561 16,281 123 2 100 0.5 

MNIST 60,000 10,000 780 10 10 0.125 

Table 3: Tested Datasets 

5.3. Classifier Accuracy 
Binary tasks are the smallest classification units in 

which accuracy can be evaluated. The classification 

performance of the multiclass classifier directly 

depends on the accuracy of the binary tasks. Latest 

GPUs provide IEEE 754 capabilities with both single 

precision and double precision support [22]. 

Unfortunately, it is reported that performance in double 

precision floating point performance drops more than 

an order of magnitude.  For these experiments, single 

precision was used. In this subsection the accuracy of 

the GPU implementation training phase using well 

known binary tasks is compared to the results provided 

by LIBSVM. Table 4 shows the accuracy results 

comparison for binary classification. For the case of 

the MNIST dataset, the 10 class problem was 

converted to a 2 class problem by doing even-vs-odd 

classification. 

Results show that classification accuracy in the 

GPU does as well as the LIBSVM solver. Even if both 

optimization algorithms run with a tolerance value 𝜏 =
0.001, there is some variation on the number of 

support vectors and the value of the offset. It is 

speculated that this difference might be due to the 

application of second order heuristics [23] or shrinking 

techniques [4] in LIBSVM. 

 

Dataset SVM 
Accuracy 

(%) 
# SVs 

Difference 
in b (%) 

# 
Iterations 

Adult  
GPU 82.697624 18668 

0.01 
115565 

LIBSVM 82.697624 19058 43735 

MNIST 
GPU 96 43730 

0.04 
69535 

LIBSVM 96 43756 76385 

Table 4: Binary Classification Accuracy 

 

5.4. Cross-Task Kernel Caching Performance 
Figure 7 and Figure 8 show the measurements of 

kernel cache performance as the number of parallel 

binary tasks executed is increased. In subsection 4.3, 

the possibility that shared support vectors across tasks 

would improve the cache hit rate was explained. 

Empirical results on the MNIST dataset, both for OVA 

and AVA output codes, confirmed this behavior, and 

showed that kernel evaluations can be avoided by 

sharing previously computed Gram matrix rows among 

binary tasks. 

 

 

Host Device 

Ubuntu 8.10 64bit Tesla C1060 

CPU: Intel Core i7 920 @ 2.67 GHz # Stream Processors: 240  

Memory 6GB (3x2 DDR2) Frequency of Processors: 1.3GHz 

  933 Gflops 

  Memory: 4GB DDR3 

  Memory Bandwidth: 102GB/s 

Host <-> Device 

PCIe x16 (8GB/s) 
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5.5. Training Time 
The GPU implementation based on the principles 

described in previous sections yield to a promising 

acceleration of the training phase of the multiclass 

classification problem. The results are shown in Table 

5. The performance increase for a single binary task is 

noticeable, while the acceleration of the multiclass 

problem reduced the overall time from almost 8 hours 

to approximately 20 minutes. 

 

Table 5: Performance Results 

Figure 9 and Figure 10 show the evolution of the 

training time of the MNIST dataset (OVA and AVA) 

as more tasks are executed concurrently. In both cases, 

a linear behavior is presented. This linear behavior 

neither does represent purely serial execution of the 

tasks nor a purely parallel execution of them.  

In the OVA case, 1172 blocks are required to be 

executed in parallel by the GPU per iteration. In AVA, 

the number of blocks required is 5274. Unfortunately, 

the number of processors in the GPU is not capable of 

executing this number of blocks simultaneously. 

Hence, they are executed in sequential batches 

according to the number of processors available in the 

GPU. For this reason, the slope of the line is an 

intermediate value between the purely sequential case 

(concatenation of the duration of the tasks) and the 

purely parallel case (duration of the longest task).  

The key benefit is that using the CUDA 

programming model, the training time will approach 

the purely parallel case as the number of processors 

available increases in the future generations of GPUs. 

 

 

Dataset 
GPU  
(sec) 

LIBSVM  
(sec) 

Speedup 

Adult 38.05 479 12.58 x 

  
OVA  

(10 tasks) 
AVA  

(45 tasks) 
AVA  

(45 tasks) 
  

MNIST 2272.71 1217.33 27833 22.86 x 

Figure 7: MNIST (OVA) Kernel Cache Hit Rate 

Figure 8: MNIST (AVA) Kernel Cache Hit Rate 

Figure 9: MNIST (OVA) Training Time 

Figure 10: MNIST (AVA) Training Time 
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6. Conclusions 
The raise of GPUs as massive parallel processors 

opens a wide range of opportunities for the 

acceleration and scaling of learning algorithms. The 

data parallel nature of many learning algorithms fits 

conveniently the set of problems that modern GPUs are 

meant to solve. Besides, previous research in 

accelerating SVMs in multiprocessor systems or 

scaling SVMs in computer clusters can be ported to 

smaller and cheaper GPU or multi GPU configurations 

where memory systems are aggressive and 

communications are considerably faster than 

networked environments. 

It has been shown in this paper that a naïve 

implementation of the SMO algorithm on a single GPU 

can lead to speedups in the range of 13-23x, which 

reduced the training time more than an order of 

magnitude while maintaining the accuracy of the 

classification tasks. This multiclass SVM classifier 

implementation leaves room for improvement and 

better results could potentially be achieved by using 

more involved SVM training techniques [23] [24]. 

Nevertheless, this work showed that the GPU 

programming model conveniently allowed executing 

multiple binary tasks in parallel over the same global 

memory. This fact benefited the training time not only 

because of the parallel execution, but also due to the 

reusability of data across binary tasks as it was 

confirmed by the empirical results. 

 

7. Future Work 
Not only classic algorithms can be adapted to state-

of-the-art programming models, the latest research on 

statistical learning algorithms can benefit from them as 

well. New techniques for large scale learning should be 

built taking into account this new era of multi core and 

GPU systems, in order to make training of large size 

problems practical or allow real-time training of 

smaller size problems.  

The latest research on large scale SVMs uses 

network topologies to partition the data [8] [9]. A 

priori, these algorithms may find convenient the use of 

multi GPU configurations due to the availability of 

large amounts of memory, and the data transfer speed 

between devices.  

It is a natural continuation of the multiclass 

classification work to explore the implementation of 

distributed classification approaches, such as Cascade 

SVM or DPSVM, by creating a network topology 

composed by multiple GPU devices that work on 

partitions of data concurrently.  
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