
6.338J Applied Parallel Computing. Final Project Report

Multiclass Classification using Support Vector Machines on GPUs

Sergio Herrero-Lopez
sherrero@mit.edu

Abstract

The scaling of serial algorithms cannot rely on the

improvement of CPUs anymore. The performance of

classical Support Vector Machine (SVM)

implementations has reached its limit and the arrival

of the multi core era requires these algorithms to adapt

to a new parallel scenario. Graphics Processing Units

(GPU) have arisen as high performance platforms to

implement data parallel algorithms. In this paper, it is

described how a naïve implementation of a multiclass

classifier based on SVMs can map its inherent degrees

of parallelism to the GPU programming model and

efficiently use its computational throughput. Empirical

results show that the training time of the classifier can

be reduced an order of magnitude compared to a

classical solver, LIBSVM, while guaranteeing the same

accuracy.

1. Introduction

Since the semiconductor industry revealed that

physical constraints were imposing an unbeatable

upper frequency limit for processors, the computing

market has been continuously supplied with multi-

core, multi-processor, and most recently GPU and

multi-GPU architectures. This shift to parallel

architectures was initially ignored, but the demand for

performance and scalability eventually has required

adapting not only new algorithms, but also old

methods to the new existing panorama. Unfortunately,

not all the algorithms see their performance enhanced

by parallel architectures, but those that do, often called

data parallel algorithms [1], can be greatly benefited

by their adaptation to this new scenario.

Support Vector Machines [2] (SVM) is a learning

algorithm that can be conveniently adapted to parallel

architectures. Its success solving classification tasks in

a wide variety of fields such as text or image

processing and medical informatics, have stimulated

research not only on their generalization performance,

but also in their execution performance and scalability.

Nevertheless, the training phase of a SVM is a

computationally expensive task. The training time of a

binary tasks composed of 100.000 points with tens of

dimensions can often take on the order of hours of

serial execution.

The efforts to reduce training time have been

numerous and effective. Osuna et al. presented a

decomposition approach that enabled tackling larger

problems by solving sub-problems iteratively [3].

Joachims’ introduced additional techniques such as

shrinking and kernel caching that are common practice

today [4]. Platt presented the Sequential Minimal

Optimization (SMO) algorithm, which decomposed the

QP problem into a series of smaller QP sub problems

that were solvable analytically without the need of the

time consuming QP optimization [5]. More recently,

Fan et al. developed a series of working set selection

heuristics that lead the SMO algorithm to a faster

convergence [6]. The combination of these

distributions has enabled fast serial SVM

implementations.

 Efforts have not only been focused on the

development of techniques to accelerate “serial”

SVMs; there are several initiatives that seek to achieve

performance gains by either parallelizing the algorithm

to fit in new architectures (PSVMs), distributing the

classification problem across nodes in a cluster

(DSVMs), or a hybrid of both. Cao et al. [7] present a

parallel version of the SMO algorithm that divides the

large dataset into smaller subsets where Platt’s SMO is

applied. Considerable performance gains are reported

when executing this approach on multiprocessors

machines that use MPI for communication. Similarly,

Zanni et al. explored an iterative decomposition

technique that would use both storage and computing

resources available in multiprocessor systems [8]. Graf

et al. designed the Cascade SVM, an algorithm that

distributed the classification task into a cascade top-

down network topology [9]. This was the first initiative

to include network topologies in DSVM problems.

Finally, Lu et al. [10] present their DPSVM approach,

which follows the basic principles of the Cascade SVM

but generalizes the distributed classification problem

for general strongly connected network topologies and

provides a convergence proof for them.

6.338J Applied Parallel Computing. Final Project Report

There is little work on how SVM algorithms map to

GPU architectures. Their computational, memory and

host - device or device - device communication

possibilities seem to provide a convenient platform for

the execution of the entire range of SVM alternatives,

from simple individual SVMs to complex DPSVM

network configurations. Catanzaro et al. [11] presented

a pioneer implementation of a binary SVM on a

Graphics Processing Unit (GPU), and reported

promising speed ups (5-32x) over LIBSVM [12].

In this paper, we continue the research direction

opened by Catanzaro et al. and implement a multi-class

classifier on a GPU. This work shows that the

resources and degrees of parallelism provided by a

GPU can be conveniently exploited to train large scale

multiclass classification tasks. Although there are a

variety of methods to solve the SVM training problem,

SMO algorithm was chosen for its popularity and more

importantly, because it defines data reusability patterns

that can be efficiently exploited by the GPU.

The organization of this paper is as follows. Section

2, briefly introduces the SVM training and

classification problem for binary tasks and problems

with multiple classes. Section 3 gives an overview of

the GPU architecture and programming model. Section

4 describes the Parallel SMO algorithm, the motivation

to execute binary tasks concurrently, along with the

details of our implementation. The performance results

of our multiclass classifier are compared with

LIBSVM in Section 5. Section 6 gives the conclusions

of this project and section 7 discusses future work.

2. Multiclass Classification

This section succinctly reviews the basic principles

of soft-margin binary SVM classification and its

combination to solve multiclass classification

problems.

2.1. Binary SVM

The binary classification problem is defined as

finding the classification function that solves the

following regularized learning problem: Given 𝑙
examples 𝑥 1 , 𝑦1 ,… , 𝑥 𝑙 , 𝑦𝑙 with 𝑥 𝑖 ∈ 𝑅𝑛 and

𝑦𝑖 ∈ −1,1 ∀𝑖.

min
𝑓∈𝐻

𝐶 𝑉(𝑦𝑖 , 𝑓(𝑥 𝑖))

𝑙

𝑖=1

+
1

2
 𝑓 𝐾

2 (1)

where the regularization is controlled via 𝐶. Classical

SVM arises by considering a specific loss function:

𝑉 𝑦𝑖 , 𝑓 𝑥 𝑖 = (1 − 𝑦𝑓(𝑥))+ (2)

where (𝑘)+ = max(𝑘, 0). Then slack variables 𝜉𝑖 are

introduced to overcome the problem introduced by its

non-differentiability:

min
𝑓∈𝐻

𝐶 𝜉𝑖

𝑙

𝑖=1

+
1

2
 𝑓 𝐾

2 (3)

subject to: 𝑦𝑖𝑓 𝑥𝑖 ≥ 1 − 𝜉𝑖 and 𝜉𝑖 ≥ 0 𝑖 = 1,… , 𝑙.

The dual form of this problem is given by:

max
𝛼∈𝑅𝑙

 𝛼𝑖 −
1

2

𝑙

𝑖=1

𝛼𝑇𝐾𝛼 (4)

subject to: 𝑦𝑖𝛼𝑖 = 0𝑙
𝑖=1 and 0 ≤ 𝛼𝑖 ≤ 𝐶 𝑖 = 1,… , 𝑙.

where 𝐾𝑖𝑗 = 𝑦𝑖𝑦𝑗 k(𝑥 𝑖 , 𝑥 𝑗) is a kernel function. (4) is a

quadratic programming optimization problem.

Common kernel functions are shown in Table 1.

Table 1: Kernel functions

Solving (4) defines the classification function:

𝑓 𝑥 = 𝑦𝑖𝛼𝑖k(𝑥 , 𝑥 𝑖)

𝑙

𝑖=1

+ 𝑏 (5)

where 𝑏 is an unregularized bias term.

2.2. Multiclass SVM
In multiclass classification given 𝑙 examples

 𝑥 1, 𝑦1 ,… , 𝑥 𝑙 , 𝑦𝑙 with 𝑥 𝑖 ∈ 𝑅𝑛 , 𝑦𝑖 ∈ 𝑌 ∀𝑖 and

𝑌 = 1, . . ,𝑀 the goal is to design a classifier that

predicts the label of new unseen samples. Classical

approaches construct the multiclass classifier as the

combination of 𝑁 independent binary classification

tasks. Binary tasks are defined in the output code

matrix 𝑅 of size 𝑀 x 𝑁, where 𝑀 is the number of

classes and 𝑁 is the number of tasks, and 𝑅𝑖𝑗 ∈

{−1,0,1}. Each column in 𝑅 represents how original

labels are translated into binary labels for each specific

binary task. Then each 𝑓𝑘(𝑥) is trained separately with

 𝑥 1 ,𝑅𝑦1𝑘 ,… , 𝑥 𝑙 ,𝑅𝑦𝑙𝑘
 where 𝑘 = 1. .𝑁. The outputs

of trained binary classifiers 𝑓 𝑘(𝑥) are used to predict

the class label that best agrees with the binary

predictions:

𝑦 = argmax
𝑦∈𝑌

 𝑅𝑦𝑘𝑓
𝑘(𝑥)

𝑁

𝑘=1

 (6)

Linear k 𝑥 𝑖 , 𝑥 𝑗 = 𝑥 𝑖𝑥 𝑗

Polynomial k 𝑥 𝑖 , 𝑥 𝑗 = (𝑎𝑥 𝑖𝑥 𝑗 + 𝑏)𝑑

Radial Basis k 𝑥 𝑖 , 𝑥 𝑗 = 𝑒−𝛽 𝑥 𝑖−𝑥 𝑗
2

Sigmoid k 𝑥 𝑖 , 𝑥 𝑗 = 𝑡𝑎𝑛ℎ(𝑎𝑥 𝑖𝑥 𝑗 + 𝑏)

6.338J Applied Parallel Computing. Final Project Report

In general, predictions can be derived from output

codes by specifying a loss function:

𝑦 = argmin
𝑦∈𝑌

 𝐿𝑜𝑠𝑠(𝑅𝑦𝑘 ,𝑓
𝑘 𝑥)

𝑁

𝑘=1

 (7)

The common types of output codes are:

 One-vs-All (OVA): 𝑀 classifiers are needed. For

the 𝑓𝑖(𝑥) classifier, the positive examples are all

the points in class 𝑖, and the negative samples all

the points not in class 𝑖.

 All-vs-All (AVA): 𝑀
2
 classifiers are needed, one

classifier to distinguish each pair of classes 𝑖 and 𝑗.
𝑓𝑖𝑗 (𝑥) is the classifier where class 𝑖 has positive

samples and class 𝑗 negative.

 Error correcting codes: Often error correcting

codes are applied to reconstruct labels from noisy

predicted binary labels.

3. General Purpose GPU

The popularity and relatively low price of graphics

processors have motivated many programmers to use

GPUs for scientific computing. Even though they were

designed specifically for triangle rasterization, today

they have evolved to serve general purpose

computation needs. Since NVIDIA released Compute

Unified Device Architecture (CUDA) [13] in 2007, a

variety of parallel programs have been developed for a

variety of different applications, including fluid

dynamics, finance or imaging. The key to CUDA’s

success are three abstractions that can be integrated

using extensions to conventional C code [14]: (1) The

hierarchy of thread groups, (2) shared memory, and (3)

barrier synchronization. The combination of multiple

levels of threads, a memory hierarchy and

synchronization mechanisms enable achieving fine-

grained data parallelism which can be conveniently

interleaved with coarse-grained data parallelism and

task parallelism.

Nevertheless, GPUs do not speed up all possible

applications. The algorithms need to explicitly express

parallelism by the execution of thousands of threads, so

that available resources in the GPU are efficiently

occupied. Fortunately, machine learning algorithms are

typically composed by primitives that are highly

parallelizable [15]: (1) Inner products, (2) outer

products, (3) linear algebra, (4) the application of non-

linearities to vectors or matrices, and (5) matrix

transposes.

 In November 2006, NVIDIA presented the Tesla

architecture, a massively multithreaded processor array

capable of concurrently executing tens of thousands of

threads [16]. This architecture was designed for

computation rather than control flow and caching, and

one of its state-of-the art devices reported almost a

Teraflop of processing power which is over an order of

magnitude larger than the latest CPUs existing today.

Furthermore, this high throughput in floating point

computation, along with abundant memory at each

layer the hierarchy model and communication through

fast memory bandwidth have yield to promising

acceleration results.

Next the CUDA programming model and the

memory model are briefly introduced.

3.1. CUDA Programming Model

The CUDA programming model is based on a

logical representation composed by three elements:

grids, blocks and threads. This logical representation is

generated by the user, and CUDA maps this

representation to the real hardware representation

underneath. This separation between the logical and

physical representations allows algorithms scaling as

the newest GPUs increase their capabilities.

As a first step, it is programmer’s task to adapt the

algorithm to a 2D grid structure. Grid executions,

known as kernel calls, are sequentially invoked by the

host. Grids are composed by blocks, which are groups

of threads that share local memory and can be

synchronized using barriers. Similarly, threads in a

block are organized in 3D. The logical representation is

illustrated in Figure 1.

The maximum size of each dimension of a block is

(512, 512, 64), but the maximum number of threads in

a block cannot exceed 512. The maximum size of each

Figure 1: Logical Representation

6.338J Applied Parallel Computing. Final Project Report

dimension of a grid is (65535, 65535). The blocks in a

grid are launched in parallel, which allows a large

number of threads being executed in parallel. The

number of threads that run simultaneously on a block,

which is called warp, and the number of blocks that

run simultaneously on a grid are hardware

implementation specific and depend on the number of

Stream Multiprocessors (SMs) and Stream Processors

(SPs) available in the device. The number of SMs and

SPs increases every generation.

Consequently, developers need to find an

appropriate partitioning of the data that occupies the

maximum number of blocks possible, and hence utilize

hardware resources uninterruptedly, in order to get

maximum acceleration of the algorithm.

3.2. CUDA Memory Model

CUDA provides a hierarchy of memories that differ on

their accessibility, operability and speed. These

memories are illustrated in Figure 2.

 Registers: The smallest but fastest memory

available. It is only accessible at the thread level

with Read/Write operations.

 Shared Memory: Slightly slower than registers. It

is shared by all the threads in a block, and allows

Read/Write operations.

 Global Memory: The largest but slowest memory

available. Accessible by all the threads executed in

the grid, and allows Read/Write operations.

 Constant Memory: It is faster than global memory,

and similarly is accessible at the grid level, but is

Read only.

Latest generations of GPUs provide 102GB/s

memory bandwidth on the GPU and 8GB/s for

communication with the CPU across the PCI-express

bus.

Figure 2: Memory Model

4. Multiclass SVM Implementation

Each of the 𝑁 binary tasks is trained using the

Sequential Minimal Optimization (SMO) algorithm,

which solves equation (4). SMO solves very large

quadratic programming (QP) optimization problems by

breaking it into a series of smaller QP sub problems.

These QP sub problems can be solved analytically

without the need of numerical optimization. In order to

adapt the algorithm to the CUDA programming model,

the Parallel SMO (PSMO) version of the algorithm

was implemented [7].

In this section, the PSMO algorithm is described.

Next, its mapping to grids, blocks and threads is

explained. Finally, the implications of the execution of

𝑁 PSMO instances in parallel are analyzed.

4.1. Parallel SMO Algorithm
Cao et al. designed the PSMO algorithm aiming to

accelerate the binary SVM training time by partitioning

the algorithm across multiple processors. Their

experiments reported considerable speedups while

maintaining the accuracy of the sequential SMO. Next,

this algorithm is explained:

Since, 𝑁 binary tasks need to be executed, the

correspondence between an instance of the PSMO

algorithm and a binary task is represented by the

superscript 𝑘, where 𝑘 = 1. .𝑁. Given 𝑃 processing

units per binary task, the sample dataset 𝑙 is partitioned

in 𝑃 subsets and one subset is given to each processing

unit. The subsets are represented by 𝑙𝑝 𝑝 = 1…𝑃,

where 𝑙𝑝𝑃
𝑝=1 = 𝑙.

We follow the following notation:

𝐼0
𝑘 = 𝑖: 𝑦𝑖

𝑘 = 1, 0 < 𝛼𝑖
𝑘 < 𝐶

∪ 𝑖: 𝑦𝑖
𝑘 = −1, 0 < 𝛼𝑖

𝑘 < 𝐶
(8)

𝐼1
𝑘 = 𝑖: 𝑦𝑖

𝑘 = 1,𝛼𝑖
𝑘 = 0 (9)

𝐼2
𝑘 = 𝑖: 𝑦𝑖

𝑘 = −1,𝛼𝑖
𝑘 = 𝐶 (10)

𝐼3
𝑘 = 𝑖: 𝑦𝑖

𝑘 = 1,𝛼𝑖
𝑘 = 𝐶 (11)

𝐼4
𝑘 = 𝑖: 𝑦𝑖

𝑘 = −1,𝛼𝑖
𝑘 = 0 (12)

Each of the 𝑝 subsets of a task 𝑘 will have its own

set of variables:

𝑓𝑖
𝑝 ,𝑘

= 𝛼𝑗
𝑘𝑦𝑗

𝑘𝑘 𝑥 𝑗 , 𝑥 𝑖 − 𝑦𝑖
𝑘

𝑙

𝑗=1

 (13)

𝑏𝑢𝑝
𝑝 ,𝑘

= min 𝑓𝑖
𝑝 ,𝑘

: 𝑖 ∈ 𝐼0
𝑘 ∪ 𝐼1

𝑘 ∪ 𝐼2
𝑘 ∪ 𝑙𝑝 (14)

6.338J Applied Parallel Computing. Final Project Report

𝐼𝑢𝑝
𝑝 ,𝑘

= argmin
𝑖

𝑓𝑖
𝑝 ,𝑘

 (15)

𝑏𝑙𝑜𝑤
𝑝 ,𝑘

= max 𝑓𝑖
𝑝 ,𝑘

: 𝑖 ∈ 𝐼0
𝑘 ∪ 𝐼3

𝑘 ∪ 𝐼4
𝑘 ∪ 𝑙𝑝 (16)

𝐼𝑙𝑜𝑤
𝑝 ,𝑘

= argmax
𝑖

𝑓𝑖
𝑝 ,𝑘

 (17)

Global variables representing the entire dataset can

be obtained from the subset variables:

𝑏𝑢𝑝
𝑘 = min{𝑏𝑢𝑝

𝑝 ,𝑘
} (18)

𝐼𝑢𝑝
𝑘 = arg

𝐼𝑢𝑝
𝑝 ,𝑘

𝑏𝑢𝑝
𝑘

(19)

𝑏𝑙𝑜𝑤
𝑘 = max{𝑏𝑙𝑜𝑤

𝑝 ,𝑘
} (20)

𝐼𝑙𝑜𝑤
𝑘 = arg

𝐼𝑙𝑜𝑤
𝑝 ,𝑘

𝑏𝑙𝑜𝑤
𝑘

(21)

𝐼𝑢𝑝
𝑘 and 𝐼𝑙𝑜𝑤

𝑘 are the indices of the two weights 𝛼𝑖
𝑘

of the smallest QP sub problem and they can be solved

analytically:

𝛼𝐼𝑢𝑝

𝑛𝑒𝑤 ,𝑘 = 𝛼𝐼𝑢𝑝

𝑜𝑙𝑑 ,𝑘 −
𝑦𝐼𝑢𝑝
𝑘 (𝑓𝐼𝑙𝑜𝑤

𝑜𝑙𝑑 ,𝑘 − 𝑓𝐼𝑢𝑝
𝑜𝑙𝑑 ,𝑘)

𝜂
 (22)

𝛼𝐼𝑙𝑜𝑤

𝑛𝑒𝑤 ,𝑘 = 𝛼𝐼𝑙𝑜𝑤

𝑜𝑙𝑑 ,𝑘 + 𝑠(𝛼𝐼𝑢𝑝

𝑜𝑙𝑑 ,𝑘 − 𝛼𝐼𝑢𝑝

𝑛𝑒𝑤 ,𝑘) (23)

where

𝑠 = 𝑦𝐼𝑢𝑝
𝑘 𝑦𝐼𝑙𝑜𝑤

𝑘 (24)

𝜂 = 2𝑘 𝑥 𝐼𝑙𝑜𝑤 , 𝑥 𝐼𝑢𝑝

−𝑘 𝑥 𝐼𝑙𝑜𝑤 , 𝑥 𝐼𝑙𝑜𝑤 − 𝑘 𝑥 𝐼𝑢𝑝 , 𝑥 𝐼𝑢𝑝
(25)

𝛼𝐼𝑢𝑝

𝑛𝑒𝑤 ,𝑘
and 𝛼𝐼𝑙𝑜𝑤

𝑛𝑒𝑤 ,𝑘
 need to be clipped to 0,𝐶 .

After optimizing the weights the error on the

𝑖𝑡ℎdata pattern, 𝑓𝑖
𝑝 ,𝑘

 needs to be updated:

𝑓𝑖
𝑝 ,𝑛𝑒𝑤 ,𝑘

= 𝑓𝑖
𝑝 ,𝑜𝑙𝑑 ,𝑘

+ 𝛼𝐼𝑙𝑜𝑤

𝑛𝑒𝑤 ,𝑘 − 𝛼𝐼𝑙𝑜𝑤

𝑜𝑙𝑑 ,𝑘 𝑦𝐼𝑙𝑜𝑤
𝑘 𝑘 𝑥 𝐼𝑙𝑜𝑤 , 𝑥 𝑖

+ 𝛼𝐼𝑢𝑝

𝑛𝑒𝑤 ,𝑘 − 𝛼𝐼𝑢𝑝

𝑜𝑙𝑑 ,𝑘 𝑦𝐼𝑢𝑝
𝑘 𝑘 𝑥 𝐼𝑢𝑝 , 𝑥 𝑖

(26)

The iterative algorithm is summarizes as follows:

Finally the offset for each task 𝑘 is calculated:

𝑏𝑘 =
𝑏𝑢𝑝
𝑘 + 𝑏𝑙𝑜𝑤

𝑘

2
 (27)

4.2. PSMO Implementation on GPU
For a GPU implementation, there is a natural

mapping between the execution of 𝑁 PSMO algorithm

instances and the grid structure defined by the CUDA

programming model. Given 𝑃 processing units and 𝑁

binary tasks, a grid composed by 𝑃𝑥𝑁 blocks can be

used to execute the most computationally expensive

steps of the training phase.

The horizontal dimension of the grid is partitioned

into 𝑃 blocks, and each block 𝑝 will process a subset

𝑙𝑝 of the training samples. Each sample 𝑖 within a

block is handled by a single thread. Threads within a

block are organized in a single dimension. The vertical

dimension of the grid indicates the task 𝑘 that is

processed by the block.

Blocks in the same column of the grid share the

same training samples, but since they belong to

different tasks they will have different labels.

Rows of the grid represent an instance of the PSMO

algorithm. A single instance of the PSMO algorithm is

illustrated in Figure 4.

The computation of the subset variables is carried

out by executing 𝑃 blocks in parallel in the GPU.

Given the fact that the number of subset variables is

reduced, calculating global variables in the host results

in better performance that its calculation on the GPU.

Global variables are then used to compute the

weights 𝛼𝐼𝑢𝑝
𝑘 ,𝛼𝐼𝑙𝑜𝑤

𝑘 . Since this step involves kernel

Initialize:

 𝛼𝑖
𝑘 = 0, 𝑓𝑖

𝑝 ,𝑘
= − 𝑦𝑖

𝑘,𝑖 ∈ 𝑙𝑝 ,

 𝑝 = 1…𝑃, 𝑘 = 1…𝑁
Calculate:

 𝑏𝑢𝑝
𝑝 ,𝑘
, 𝐼𝑢𝑝

𝑝 ,𝑘
, 𝑏𝑙𝑜𝑤

𝑝 ,𝑘
, 𝐼𝑙𝑜𝑤

𝑝 ,𝑘
,𝑝 = 1…𝑃, 𝑘 = 1…𝑁

Obtain:

 𝑏𝑢𝑝
𝑘 , 𝐼𝑢𝑝

𝑘 ,𝑏𝑙𝑜𝑤
𝑘 , 𝐼𝑙𝑜𝑤

𝑘 , 𝑘 = 1…𝑁

Iterate task 𝑘 until 𝑏𝑙𝑜𝑤
𝑘 > 𝑏𝑢𝑝

𝑘 + 2𝜏

Optimize 𝛼𝐼𝑢𝑝
𝑘 ,𝛼𝐼𝑙𝑜𝑤

𝑘

Update 𝑓𝑖
𝑝 ,𝑘
 , 𝑝 = 1…𝑃

Calculate 𝑏𝑢𝑝
𝑝 ,𝑘
, 𝐼𝑢𝑝

𝑝 ,𝑘
, 𝑏𝑙𝑜𝑤

𝑝 ,𝑘
, 𝐼𝑙𝑜𝑤

𝑝 ,𝑘
, 𝑝 = 1…𝑃

Obtain 𝑏𝑢𝑝
𝑘 , 𝐼𝑢𝑝

𝑘 ,𝑏𝑙𝑜𝑤
𝑘 , 𝐼𝑙𝑜𝑤

𝑘

Repeat

Figure 3: PSMO algorithm

6.338J Applied Parallel Computing. Final Project Report

evaluations, it needs to be carried out in the GPU.

After the weights have been updated, 𝑃 blocks are

executed to calculate the new 𝑓𝑖
𝑝 ,𝑘

 values. Finally, the

stop criterion is checked to determine whether the

PSMO instance has converged or needs to proceed to a

new iteration.

4.3. Task Parallelization Implications
Although binary tasks are independently trained,

there are two direct implications associated to their

parallel execution:

4.3.1. Cross-Task Kernel Caching: As the

dimensionality of the samples increases, kernel

evaluations become the most computationally

expensive step of SVM training. Since SMO algorithm

focuses on finding and optimizing non-zero weights,

the algorithm tends to demand the same rows of the

Gram matrix K several times as it approaches

convergence. For large datasets, it is not feasible to

store the entire matrix K on memory; hence it is a

common practice to implement kernel caching

mechanisms that exploit the reusability of rows in

matrix K. SVMLight uses an LRU caching strategy [4].

The concurrent execution of multiple binary tasks

that share the same memory allows different tasks

sharing kernel evaluations. If a training sample is

found to be a support vector in more than one task, a

single kernel evaluation will be shared among those

tasks and the kernel cache hit rate will increase. A

representation of support vectors being shared among

tasks is illustrated in Figure 6. Our implementation

exploits this beneficial property. Similarly, if multiple

tasks need to evaluate the same non-cached row of

matrix K in the same iteration, the row is evaluated

once and shared with the others avoiding multiple

evaluations. Empirical results are presented in Section

V.

In cache miss situations, new rows of the Gram

matrix are calculated using CUDA Basic Linear

Algebra Subroutines (CUBLAS), which provide

optimized functions for matrix-vector multiplications

[17]. The optimization of these routines has been

confirmed by [18]

 4.3.2. Progressive Grid Reduction: Each of the 𝑁

binary tasks has different convergence rates. If any of

the tasks has already converged, a fixed 𝑃𝑥𝑁 grid

would require launching idle rows of blocks. Even if

passive blocks do not need to run, they would require

to be assigned to the underlying hardware like the rest

of blocks. Consequently they would hold GPU

resources and delay the execution of non-converged

blocks. Hence, it is recommended dynamically

reducing the vertical dimension of the grid as binary

tasks converge.

5. Performance Results

This section presents the performance results of

executing this GPU implementation of the multiclass

Figure 4: Parallel SMO for a single binary task

Figure 6: Shared SVs (red). AVA (Left), OVA (Right)

Figure 5: Dynamic Grid Reduction

6.338J Applied Parallel Computing. Final Project Report

classifier, compared with LIBSVM. For both cases, the

same kernel type, regularization parameter 𝐶, and

stopping criteria is used. LIBSVM is also based on the

SMO algorithm. It uses the AVA output code for

multiclass classification and executes binary tasks

sequentially [19]. Both the LIBSVM cache size and the

GPU implementation kernel cache size were set to be

of equal size, 2GB.

In this section prediction performance was not

considered. The author believes that prediction

performance depends directly on the optimization of

the kernel evaluation, which can be efficiently done

using CUBLAS Library.

5.1. Host and Device
The specifications of the hardware used for the

experiments in this section are presented in Table 2.

Table 2: Host and Device Specifications

5.2. Datasets
The GPU implementation was tested on well

known datasets. Initially, Adult dataset [20] was used

to test the correctness of single binary classifications

tasks. Then, MNIST dataset [21] was used to analyze

the performance in multiclass problems. The sizes of

these datasets and the parameters used for training are

indicated in Table 3.

Dataset

Training
Points

Testing
Points

Features

Classes

C β

Adult 32,561 16,281 123 2 100 0.5

MNIST 60,000 10,000 780 10 10 0.125

Table 3: Tested Datasets

5.3. Classifier Accuracy
Binary tasks are the smallest classification units in

which accuracy can be evaluated. The classification

performance of the multiclass classifier directly

depends on the accuracy of the binary tasks. Latest

GPUs provide IEEE 754 capabilities with both single

precision and double precision support [22].

Unfortunately, it is reported that performance in double

precision floating point performance drops more than

an order of magnitude. For these experiments, single

precision was used. In this subsection the accuracy of

the GPU implementation training phase using well

known binary tasks is compared to the results provided

by LIBSVM. Table 4 shows the accuracy results

comparison for binary classification. For the case of

the MNIST dataset, the 10 class problem was

converted to a 2 class problem by doing even-vs-odd

classification.

Results show that classification accuracy in the

GPU does as well as the LIBSVM solver. Even if both

optimization algorithms run with a tolerance value 𝜏 =
0.001, there is some variation on the number of

support vectors and the value of the offset. It is

speculated that this difference might be due to the

application of second order heuristics [23] or shrinking

techniques [4] in LIBSVM.

Dataset SVM
Accuracy

(%)
SVs

Difference
in b (%)

Iterations

Adult
GPU 82.697624 18668

0.01
115565

LIBSVM 82.697624 19058 43735

MNIST
GPU 96 43730

0.04
69535

LIBSVM 96 43756 76385

Table 4: Binary Classification Accuracy

5.4. Cross-Task Kernel Caching Performance
Figure 7 and Figure 8 show the measurements of

kernel cache performance as the number of parallel

binary tasks executed is increased. In subsection 4.3,

the possibility that shared support vectors across tasks

would improve the cache hit rate was explained.

Empirical results on the MNIST dataset, both for OVA

and AVA output codes, confirmed this behavior, and

showed that kernel evaluations can be avoided by

sharing previously computed Gram matrix rows among

binary tasks.

Host Device

Ubuntu 8.10 64bit Tesla C1060

CPU: Intel Core i7 920 @ 2.67 GHz # Stream Processors: 240

Memory 6GB (3x2 DDR2) Frequency of Processors: 1.3GHz

 933 Gflops

 Memory: 4GB DDR3

 Memory Bandwidth: 102GB/s

Host <-> Device

PCIe x16 (8GB/s)

6.338J Applied Parallel Computing. Final Project Report

5.5. Training Time
The GPU implementation based on the principles

described in previous sections yield to a promising

acceleration of the training phase of the multiclass

classification problem. The results are shown in Table

5. The performance increase for a single binary task is

noticeable, while the acceleration of the multiclass

problem reduced the overall time from almost 8 hours

to approximately 20 minutes.

Table 5: Performance Results

Figure 9 and Figure 10 show the evolution of the

training time of the MNIST dataset (OVA and AVA)

as more tasks are executed concurrently. In both cases,

a linear behavior is presented. This linear behavior

neither does represent purely serial execution of the

tasks nor a purely parallel execution of them.

In the OVA case, 1172 blocks are required to be

executed in parallel by the GPU per iteration. In AVA,

the number of blocks required is 5274. Unfortunately,

the number of processors in the GPU is not capable of

executing this number of blocks simultaneously.

Hence, they are executed in sequential batches

according to the number of processors available in the

GPU. For this reason, the slope of the line is an

intermediate value between the purely sequential case

(concatenation of the duration of the tasks) and the

purely parallel case (duration of the longest task).

The key benefit is that using the CUDA

programming model, the training time will approach

the purely parallel case as the number of processors

available increases in the future generations of GPUs.

Dataset
GPU
(sec)

LIBSVM
(sec)

Speedup

Adult 38.05 479 12.58 x

OVA

(10 tasks)
AVA

(45 tasks)
AVA

(45 tasks)

MNIST 2272.71 1217.33 27833 22.86 x

Figure 7: MNIST (OVA) Kernel Cache Hit Rate

Figure 8: MNIST (AVA) Kernel Cache Hit Rate

Figure 9: MNIST (OVA) Training Time

Figure 10: MNIST (AVA) Training Time

6.338J Applied Parallel Computing. Final Project Report

6. Conclusions
The raise of GPUs as massive parallel processors

opens a wide range of opportunities for the

acceleration and scaling of learning algorithms. The

data parallel nature of many learning algorithms fits

conveniently the set of problems that modern GPUs are

meant to solve. Besides, previous research in

accelerating SVMs in multiprocessor systems or

scaling SVMs in computer clusters can be ported to

smaller and cheaper GPU or multi GPU configurations

where memory systems are aggressive and

communications are considerably faster than

networked environments.

It has been shown in this paper that a naïve

implementation of the SMO algorithm on a single GPU

can lead to speedups in the range of 13-23x, which

reduced the training time more than an order of

magnitude while maintaining the accuracy of the

classification tasks. This multiclass SVM classifier

implementation leaves room for improvement and

better results could potentially be achieved by using

more involved SVM training techniques [23] [24].

Nevertheless, this work showed that the GPU

programming model conveniently allowed executing

multiple binary tasks in parallel over the same global

memory. This fact benefited the training time not only

because of the parallel execution, but also due to the

reusability of data across binary tasks as it was

confirmed by the empirical results.

7. Future Work
Not only classic algorithms can be adapted to state-

of-the-art programming models, the latest research on

statistical learning algorithms can benefit from them as

well. New techniques for large scale learning should be

built taking into account this new era of multi core and

GPU systems, in order to make training of large size

problems practical or allow real-time training of

smaller size problems.

The latest research on large scale SVMs uses

network topologies to partition the data [8] [9]. A

priori, these algorithms may find convenient the use of

multi GPU configurations due to the availability of

large amounts of memory, and the data transfer speed

between devices.

It is a natural continuation of the multiclass

classification work to explore the implementation of

distributed classification approaches, such as Cascade

SVM or DPSVM, by creating a network topology

composed by multiple GPU devices that work on

partitions of data concurrently.

8. References

[1] Hillis, W. D. and Steele, G. L. 1986. Data parallel

algorithms. Commun. ACM 29, 12 (Dec. 1986), 1170-1183.

[2] V. N. Vapnik The Nature of Statistical Learning Theory

New York: Springer-Verlag, 1995.

[3] Osuna, E., Freund, R., & Girosi, F. (1997). An improved

training algorithm for support vector machines. Neural

Networks for Signal Processing [1997] VII. Proceedings of

the 1997 IEEE Workshop, 276–285.

[4] T. Joachims, Making large-Scale SVM Learning

Practical. Advances in Kernel Methods - Support Vector

Learning, B. Schölkopf and C. Burges and A. Smola (ed.),

MIT-Press, 1999.

[5] John C. Platt, Fast training of support vector machines

using sequential minimal optimization, Advances in kernel

methods: support vector learning, MIT Press, Cambridge,

MA, 1999.

[6] R.-E. Fan, P.-H. Chen, and C.-J. Lin. Working set

selection using the second order information for training

SVM. Journal of Machine Learning Research 6, 1889-1918,

2005.

[7] Cao, L.J.; Keerthi, S.S.; Chong-Jin Ong; Zhang, J.Q.;

Periyathamby, U.; Xiu Ju Fu; Lee, H.P., "Parallel sequential

minimal optimization for the training of support vector

machines," Neural Networks, IEEE Transactions on , vol.17,

no.4, pp. 1039-1049, July 2006.

[8] Zanni, L., Serafini, T., and Zanghirati, G. 2006. Parallel

Software for Training Large Scale Support Vector Machines

on Multiprocessor Systems. J. Mach. Learn. Res. 7 (Dec.

2006), 1467-1492.

[9] Graf, H. P., Cosatto, E., Bottou, L., Dourdanovic, I., &

Vapnik, V. (2005). Parallel support vector machines: The

cascade svm. In L. K. Saul, Y. Weiss and L. Bottou (Eds.),

Advances in neural information processing systems 17, 521--

528. Cambridge, MA: MIT Press.

[10] Yumao Lu; Roychowdhury, V.; Vandenberghe, L.,

"Distributed Parallel Support Vector Machines in Strongly

Connected Networks," Neural Networks, IEEE Transactions

on , vol.19, no.7, pp.1167-1178, July 2008.

[11] Catanzaro, B., Sundaram, N., and Keutzer, K. 2008. Fast

support vector machine training and classification on

graphics processors. In Proceedings of the 25th international

Conference on Machine Learning (Helsinki, Finland, July 05

- 09, 2008). ICML '08, vol. 307. ACM, New York, NY, 104-

111.

[12] Chih-Chung Chang and Chih-Jen Lin, LIBSVM : a

library for support vector machines, 2001. Software available

at http://www.csie.ntu.edu.tw/~cjlin/libsvm

6.338J Applied Parallel Computing. Final Project Report

[13] NVIDIA CUDA Compute Unified Device Architecture.

Programming Guide NVIDIA Corporation. June 2007.

[14] Nickolls, J., Buck, I., Garland, M., and Skadron, K.

2008. Scalable Parallel Programming with CUDA. Queue 6,

2 (Mar. 2008), 40-53.

[15] Steinkrau, D., Simard, P. Y., and Buck, I. 2005. Using

GPUs for Machine Learning Algorithms. In Proceedings of

the Eighth international Conference on Document Analysis

and Recognition (August 31 - September 01, 2005). ICDAR.

IEEE Computer Society, Washington, DC, 1115-1119.

[16] Lindholm, E.; Nickolls, J.; Oberman, S.; Montrym, J.,

"NVIDIA Tesla: A Unified Graphics and Computing

Architecture," Micro, IEEE , vol.28, no.2, pp.39-55, March-

April 2008.

[17] CUDA. CUBLAS Library. NVIDIA Corporation. June

2007.

[18] Barrachina, S.; Castillo, M.; Igual, F.D.; Mayo, R.;

Quintana-Orti, E.S., "Evaluation and tuning of the Level 3

CUBLAS for graphics processors," Parallel and Distributed

Processing, 2008. IPDPS 2008. IEEE International

Symposium on , vol., no., pp.1-8, 14-18 April 2008.

[19] C.-W. Hsu and C.-J. Lin. A comparison of methods for

multi-class support vector machines , IEEE Transactions on

Neural Networks, 13(2002), 415-425.

[20] Asuncion, A., & Newman, D. (2007). UCI machine

learning repository.

[21] LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P.(1998).

Gradient-based learning applied to document recognition.

Proceedings of the IEEE, 86, 2278–2324.

[22] IEEE 754-2008 Standard for Floating-Point Arithmetic.

[23] S. S. Keerthi , S. K. Shevade , C. Bhattacharyya , K. R.

K. Murthy, Improvements to Platt's SMO Algorithm for

SVM Classifier Design, Neural Computation, v.13 n.3,

p.637-649, March 2001.

[24] Joachims, T. 2006. Training linear SVMs in linear time.

In Proceedings of the 12th ACM SIGKDD international

Conference on Knowledge Discovery and Data Mining

(Philadelphia, PA, USA, August 20 - 23, 2006). KDD '06.

ACM, New York, NY, 217-226.

