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1. Introduction

The concept of parallel algorithms can be applied to a particular problem in artificial intelligence 
and game theory. In two-player strategy games such as chess, checkers, etc., computer programs 
usually give each board position a numerical value algorithmically determined a specific set of 
evaluation  parameters.  However,  it  is  not  always  obvious  to  the  developer  which  set  of 
parameters  would produce the strongest  computer-based opponent,  especially for less-known 
games (e.g.  chess variants).  For this reason, it  is a common practice for game developers to 
tweak  the  evaluation  parameters  in  an  attempt  to  create  the  strongest  possible  automated 
opponent. This can be done in a manual, recursive way by testing the strongest current automated 
opponent  with a “tweaked” version of  itself  to  find out  which of two opponents comes out 
victorious. However, it can be much more efficient if the process of determining the strongest 
possible opponent in a strategy game is carried out automatically. One way of discovering the 
optimal set of evaluation parameters is by means of a genetic algorithm.

1.1. Genetic Algorithms

Genetic algorithms, inspired by evolutionary biology, are an optimization method for discovering 
an  approximate  or  exact  solution  to  a  specific  problem.  Each possible  solution  has  its  own 
“genetic code” or “genome,” which usually consists of binary strings that represent a certain 
attribute, or “gene.” The process of natural selection is simulated by having solutions compete 
against other solutions to survive into the next generation of solutions and pass their genetic 
content onto offspring. In this project, we would like to find the set of evaluation parameters that 
result in the strongest opponent, that is to say, the set of evaluation parameters that have the 
highest probability of winning, or play with the most optimal strategy.

1.2. Parallelism in Genetic Algorithms

Each  round  of  this  genetic  algorithm  consists  of  a  tournament  between  all  of  the  current 
competitors. In this system, we would like to carry out a round-robin tournament such that each 
competitor plays two matches against all other competitors, one playing as the first player and 
another playing as the second player. This results in a total of n*(n-1) games played each round, 
with an order of O(n2). In order to ensure a diverse population of competitors in each round, 
which is a precaution against to prevent local solutions, it is necessary to have a sufficiently large 
population, meaning that a significant number of games would have to be completed in each 
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round. Therefore, the tournament very easily becomes the most time-consuming portion of the 
algorithm, as each simulated game takes an extensive amount of computation time due to the tree 
search algorithms that are ubiquitous in game theory.  The main focus in this project will be 
parallelizing the simulated game play that occurs in the natural selection segment of this genetic 
algorithm.

2. The 5,5,4 Game (Tic-Tac-Toe Variant)

The strategy game used for this project will the 5,5,4-game., a 5x5 variant of Tic-Tac-Toe, where 
the first player to obtain four consecutive pieces horizontally, vertically, or diagonally wins the 
game. The 5,5,4-game belongs to a class of games called m,n,k-games in which two players 
trade moves against each other on an mxn board, trying to connect k consecutive pieces. 
Theoretically, the second player cannot have a winning strategy due to the advantage that the 
first player obtains by moving first, therefore an m,n,k-game can only be a win for the first 
player or a draw if both players utilize a perfect strategy. The 5,5,4-game, like the more popular 
typical 3,3,3-game is a draw with perfect play. An ideal solution for a set of evaluation 
parameters should result in a player that can achieve at least a draw under any circumstances.

Figure 1: The 5,5,4-game

3. Game Engine

The simulation engine for game play required an internal implementation of the game board and 
possible moves. Board positions are given a specific value based on a each competitor's unique 
set of evaluation parameters; the best move is chosen based on a minimax tree search with alpha-
beta pruning.
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3.1. Game Representation

The board is represented by the following attributes:

board_boxes: status of the board, 5x5 matrix, {1,0,-1}
board_turn: player who moves next, {1,0,-1}
board_winner: player who has won, {1,0,-1}
board_emptyboxes: number of remaining boxes, {0,1,...,25}

Possible moves are represented as follows:

move_x: x-coordinate of move, {1,2,3,4,5}
move_y: y-coordinate of move, {1,2,3,4,5}
move_player: player making move, {1,-1}

3.2. Evaluation Parameters

Each competitor has a set of evaluation parameters by which a numerical score is given to each 
board position.

Positional parameters determine the weight given to each player when specific points on the 
board are played. Due to the horizontal, vertical, and diagonal symmetry of the board, only 6 of 
these attributes are needed for each player, resulting in a total of 12 8-bit positional parameters.

sq11x, sq12x, sq13x, sq22x, sq23x, sq33x: First player, {0,1,...,255}
sq11o, sq12o, sq13o, sq22o, sq23o, sq33o: Second player, {0,1,...,255}

Figure 2: Mapping of positional parameters to board locations
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Streak parameters determine the weight given to each player for obtaining one, two, or three 
consecutive pieces horizontally,  vertically,  or diagonally.  A special  weight not determined by 
evaluation parameters is given when a player obtains four consecutive pieces. There are 12 of 
these 8-bit streak parameters.

h1x, h2x, h3x: Horizontal and vertical streaks for first player, {0,1,...,255}
h1o, h2o, h3o: Horizontal and vertical streaks for second player, {0,1,...,255}
d1x, d2x, d3x: Diagonal streak parameters for first player, {0,1,...,255}
d1o, d2o, d3o: Diagonal streak parameters for second player, {0,1,...,255}

8-bit scale factors determine how much emphasis is placed on positional and streak parameters

scale_sq: Scale factor for positional parameters, {0,1,...,255}
scale_cons: Scale factor for streak parameters, {0,1,...,255}

Finally,  the  3-bit  search_depth,  {0,1,...,7},  determines  the  maximum  number  of  future 
moves ahead in the tree search that a player can view in order to decide on the best move.

All  parameters  are  represented  as  integers  then  later  converted  to  binary strings  for  genetic 
operations.

3.3. Alpha-Beta Search

A minimax  search  with  alpha-beta  pruning  is  initiated  by  each  player,  using  its  specific 
evaluation parameters, to choose the best move by maximizing the minimum future gain. Some 
players will be able to search farther ahead than others. However, modifications were made to 
make the depth more shallow earlier in the game since the tree of possible positions for a given 
depth is much larger earlier in the game. This change was made to shorten the amount of time 
per game. However, since the number of possible positions for a given depth gets much smaller 
later in the game, players are able to search farther ahead as the game progresses. The maximum 
search depth is a deterministic function based on the number of remaining squares on the board.

Remaining squares Search depth
20 to 25 2
13 to 19 3
10 to 12 4

9 5
Less than 8 7

Figure 3: Maximum search depth based on the number of remaining squares
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4. Genetic Operations

The genetic  algorithm for  optimizing  the  evaluation  parameters  involves  a  series  of  genetic 
operations in each stage of the algorithm.

4.1. Natural Selection

Natural selection in the algorithm is carried out by playing all competitors against each other in a 
round-robin tournament. The tournament is designed such that each player competes against all 
other players twice—once as the first player, and another time as the second player. This results 
in a total of n*(n-1) games played during each round.

At the end of the round, fitness scores are calculated for each competitor based on the number of 
wins, losses, and draws accumulated during the course of the round. The fitness score formula 
was chosen to be:

fitness score = 5*wins + 1*draws - 4*losses

At the end of the round, those with nonpositive fitness scores are removed from the population. 
Thus, this fitness score is designed such that a player with an equal number of losses and wins 
(and no draws) has a positive fitness score, and also such that a player with two draws has more 
fitness than a player with one win and one loss.

4.2. Reproduction

At the end of natural selection stage of the algorithm, those competitors with nonpositive fitness 
scores are taken out of the population due to their poor performance. The empty spots left behind 
by those competitors that failed to survive the round are occupied by new competitors who are 
created by combining the genetic content of surviving competitors. For each empty spot in the 
pool  of  competitors,  two  parents  are  randomly chosen  from the  surviving  competitors  with 
probabilities  proportional to their  fitness scores.  Then, each bit  of  the genetic content of the 
offspring is randomly chosen from one of the parents with a 0.5 probability of acquiring the bit 
from each parent.

Figure 4: Reproduction of two parents
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4.3. Mutation

After the population has been filled with children, all competitors go through a mutation stage 
where each bit in the evaluation parameters has a chance of being flipped. The rate of mutation 
per bit was chosen to be 0.01.

Figure 5: Mutation of a gene

4.4. Convergence

Convergence was not considered for this project though a reasonable proposal for convergence 
would be when every match results in a draw for several rounds. This is a reasonable criterion 
for convergence because the 5,5,4-game is a theoretical draw, so if every game ends in a draw, 
this could be indicative of a near-optimal strategy. However, there is a possibility of discovering 
local maxima. The population size and mutation rate need to be properly chosen to prevent this.

5. Serial vs. Parallel

Since the natural selection segment of the algorithm is the most computationally intensive, this 
will be the benchmark to compare serial and parallel performance. These results were obtained 
by  running  Star-P   with  8  processes  with  beowulf.csail.mit.edu  as  the  client  and 
starp.csail.mit.edu as the server. A specific number of identical games were played in serial and 
then in parallel. The result was that as the number of matches increases the ratio between parallel 
running time and serial running time decreases. This indicates that there would be a substantial 
speed increase in a round-robin tournament of a much larger size when running in parallel rather 
than in serial

n = 8 n = 16 n = 32
Parallel 19.33 s 36.08 s 67.29 s
Serial 27.26 s 77.60 s 178.45 s
Ratio 0.71 0.46 0.38

Figure 6: Parallel vs. serial running time results for a series of n matches
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6. Conclusions

The  simulated  game  play  has  been  parallelized  to  shorten  the  running  time  of  the  natural 
selection segment  of a genetic  algorithm. This will  expedite  the process of learning optimal 
parameters for playing the 5,5,4-game.
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