
A Distributed Genetic Algorithm for Learning
Evaluation Parameters in a Strategy Game

18.337/6.338 Final Project

Gary M. Matthias

1. Introduction

The concept of parallel algorithms can be applied to a particular problem in artificial intelligence
and game theory. In two-player strategy games such as chess, checkers, etc., computer programs
usually give each board position a numerical value algorithmically determined a specific set of
evaluation parameters. However, it is not always obvious to the developer which set of
parameters would produce the strongest computer-based opponent, especially for less-known
games (e.g. chess variants). For this reason, it is a common practice for game developers to
tweak the evaluation parameters in an attempt to create the strongest possible automated
opponent. This can be done in a manual, recursive way by testing the strongest current automated
opponent with a “tweaked” version of itself to find out which of two opponents comes out
victorious. However, it can be much more efficient if the process of determining the strongest
possible opponent in a strategy game is carried out automatically. One way of discovering the
optimal set of evaluation parameters is by means of a genetic algorithm.

1.1. Genetic Algorithms

Genetic algorithms, inspired by evolutionary biology, are an optimization method for discovering
an approximate or exact solution to a specific problem. Each possible solution has its own
“genetic code” or “genome,” which usually consists of binary strings that represent a certain
attribute, or “gene.” The process of natural selection is simulated by having solutions compete
against other solutions to survive into the next generation of solutions and pass their genetic
content onto offspring. In this project, we would like to find the set of evaluation parameters that
result in the strongest opponent, that is to say, the set of evaluation parameters that have the
highest probability of winning, or play with the most optimal strategy.

1.2. Parallelism in Genetic Algorithms

Each round of this genetic algorithm consists of a tournament between all of the current
competitors. In this system, we would like to carry out a round-robin tournament such that each
competitor plays two matches against all other competitors, one playing as the first player and
another playing as the second player. This results in a total of n*(n-1) games played each round,
with an order of O(n2). In order to ensure a diverse population of competitors in each round,
which is a precaution against to prevent local solutions, it is necessary to have a sufficiently large
population, meaning that a significant number of games would have to be completed in each

1

round. Therefore, the tournament very easily becomes the most time-consuming portion of the
algorithm, as each simulated game takes an extensive amount of computation time due to the tree
search algorithms that are ubiquitous in game theory. The main focus in this project will be
parallelizing the simulated game play that occurs in the natural selection segment of this genetic
algorithm.

2. The 5,5,4 Game (Tic-Tac-Toe Variant)

The strategy game used for this project will the 5,5,4-game., a 5x5 variant of Tic-Tac-Toe, where
the first player to obtain four consecutive pieces horizontally, vertically, or diagonally wins the
game. The 5,5,4-game belongs to a class of games called m,n,k-games in which two players
trade moves against each other on an mxn board, trying to connect k consecutive pieces.
Theoretically, the second player cannot have a winning strategy due to the advantage that the
first player obtains by moving first, therefore an m,n,k-game can only be a win for the first
player or a draw if both players utilize a perfect strategy. The 5,5,4-game, like the more popular
typical 3,3,3-game is a draw with perfect play. An ideal solution for a set of evaluation
parameters should result in a player that can achieve at least a draw under any circumstances.

Figure 1: The 5,5,4-game

3. Game Engine

The simulation engine for game play required an internal implementation of the game board and
possible moves. Board positions are given a specific value based on a each competitor's unique
set of evaluation parameters; the best move is chosen based on a minimax tree search with alpha-
beta pruning.

2

3.1. Game Representation

The board is represented by the following attributes:

board_boxes: status of the board, 5x5 matrix, {1,0,-1}
board_turn: player who moves next, {1,0,-1}
board_winner: player who has won, {1,0,-1}
board_emptyboxes: number of remaining boxes, {0,1,...,25}

Possible moves are represented as follows:

move_x: x-coordinate of move, {1,2,3,4,5}
move_y: y-coordinate of move, {1,2,3,4,5}
move_player: player making move, {1,-1}

3.2. Evaluation Parameters

Each competitor has a set of evaluation parameters by which a numerical score is given to each
board position.

Positional parameters determine the weight given to each player when specific points on the
board are played. Due to the horizontal, vertical, and diagonal symmetry of the board, only 6 of
these attributes are needed for each player, resulting in a total of 12 8-bit positional parameters.

sq11x, sq12x, sq13x, sq22x, sq23x, sq33x: First player, {0,1,...,255}
sq11o, sq12o, sq13o, sq22o, sq23o, sq33o: Second player, {0,1,...,255}

Figure 2: Mapping of positional parameters to board locations

3

Streak parameters determine the weight given to each player for obtaining one, two, or three
consecutive pieces horizontally, vertically, or diagonally. A special weight not determined by
evaluation parameters is given when a player obtains four consecutive pieces. There are 12 of
these 8-bit streak parameters.

h1x, h2x, h3x: Horizontal and vertical streaks for first player, {0,1,...,255}
h1o, h2o, h3o: Horizontal and vertical streaks for second player, {0,1,...,255}
d1x, d2x, d3x: Diagonal streak parameters for first player, {0,1,...,255}
d1o, d2o, d3o: Diagonal streak parameters for second player, {0,1,...,255}

8-bit scale factors determine how much emphasis is placed on positional and streak parameters

scale_sq: Scale factor for positional parameters, {0,1,...,255}
scale_cons: Scale factor for streak parameters, {0,1,...,255}

Finally, the 3-bit search_depth, {0,1,...,7}, determines the maximum number of future
moves ahead in the tree search that a player can view in order to decide on the best move.

All parameters are represented as integers then later converted to binary strings for genetic
operations.

3.3. Alpha-Beta Search

A minimax search with alpha-beta pruning is initiated by each player, using its specific
evaluation parameters, to choose the best move by maximizing the minimum future gain. Some
players will be able to search farther ahead than others. However, modifications were made to
make the depth more shallow earlier in the game since the tree of possible positions for a given
depth is much larger earlier in the game. This change was made to shorten the amount of time
per game. However, since the number of possible positions for a given depth gets much smaller
later in the game, players are able to search farther ahead as the game progresses. The maximum
search depth is a deterministic function based on the number of remaining squares on the board.

Remaining squares Search depth
20 to 25 2
13 to 19 3
10 to 12 4

9 5
Less than 8 7

Figure 3: Maximum search depth based on the number of remaining squares

4

4. Genetic Operations

The genetic algorithm for optimizing the evaluation parameters involves a series of genetic
operations in each stage of the algorithm.

4.1. Natural Selection

Natural selection in the algorithm is carried out by playing all competitors against each other in a
round-robin tournament. The tournament is designed such that each player competes against all
other players twice—once as the first player, and another time as the second player. This results
in a total of n*(n-1) games played during each round.

At the end of the round, fitness scores are calculated for each competitor based on the number of
wins, losses, and draws accumulated during the course of the round. The fitness score formula
was chosen to be:

fitness score = 5*wins + 1*draws - 4*losses

At the end of the round, those with nonpositive fitness scores are removed from the population.
Thus, this fitness score is designed such that a player with an equal number of losses and wins
(and no draws) has a positive fitness score, and also such that a player with two draws has more
fitness than a player with one win and one loss.

4.2. Reproduction

At the end of natural selection stage of the algorithm, those competitors with nonpositive fitness
scores are taken out of the population due to their poor performance. The empty spots left behind
by those competitors that failed to survive the round are occupied by new competitors who are
created by combining the genetic content of surviving competitors. For each empty spot in the
pool of competitors, two parents are randomly chosen from the surviving competitors with
probabilities proportional to their fitness scores. Then, each bit of the genetic content of the
offspring is randomly chosen from one of the parents with a 0.5 probability of acquiring the bit
from each parent.

Figure 4: Reproduction of two parents

5

4.3. Mutation

After the population has been filled with children, all competitors go through a mutation stage
where each bit in the evaluation parameters has a chance of being flipped. The rate of mutation
per bit was chosen to be 0.01.

Figure 5: Mutation of a gene

4.4. Convergence

Convergence was not considered for this project though a reasonable proposal for convergence
would be when every match results in a draw for several rounds. This is a reasonable criterion
for convergence because the 5,5,4-game is a theoretical draw, so if every game ends in a draw,
this could be indicative of a near-optimal strategy. However, there is a possibility of discovering
local maxima. The population size and mutation rate need to be properly chosen to prevent this.

5. Serial vs. Parallel

Since the natural selection segment of the algorithm is the most computationally intensive, this
will be the benchmark to compare serial and parallel performance. These results were obtained
by running Star-P with 8 processes with beowulf.csail.mit.edu as the client and
starp.csail.mit.edu as the server. A specific number of identical games were played in serial and
then in parallel. The result was that as the number of matches increases the ratio between parallel
running time and serial running time decreases. This indicates that there would be a substantial
speed increase in a round-robin tournament of a much larger size when running in parallel rather
than in serial

n = 8 n = 16 n = 32
Parallel 19.33 s 36.08 s 67.29 s
Serial 27.26 s 77.60 s 178.45 s
Ratio 0.71 0.46 0.38

Figure 6: Parallel vs. serial running time results for a series of n matches

6

6. Conclusions

The simulated game play has been parallelized to shorten the running time of the natural
selection segment of a genetic algorithm. This will expedite the process of learning optimal
parameters for playing the 5,5,4-game.

7

