
Fixed Point Arithmetic and LU Decomposition in ALA

Scott Greenwald

May 13, 2009

1 Introduction

What

2 Number Representation

At the time of the mid-project report, I predicted that using a mixed-number representation would make the
overall implementation easier. After implementing much of the machinery required for such an approach, I
decided against it in favor of a binary fixed point representation.

2.1 Mixed-Number Representation

The concept of mixed number representation was to use triples (a, b, c) to represent mixed numbers a + b/c,
and operate on them with addition, multiplication, and division as follows

(a1, b1, c1) + (a2, b2, c2) = (a1 + a2, b1 c2 + b2 c1, c1 c2)
(a1, b1, c1) ∗ (a2, b2, c2) = (a1 a2, a1 b2 c1 + a2 b1 c2, c1 c2)
(a1, b1, c1) / (a2, b2, c2) = (0, c2 (a1 c1 + b1), c1(a2 c2 + b2))

(2.1)

Observe that computing the triple sum requires 2 additions and 3 multiplications, multiplication requires
6 multiplications and 1 addition, and division requires 4 multiplications and 2 additions. In the ALA im-
plementation, each of the operators becomes a geometric object with a location on the grid. The following
schematics illustrate the connectivity required.

Addition Multiplication

Division

1



The corresponding implementations in ALA are pictured below

Addition

Multiplication

Division

By using varying numbers of multiplications and additions in computing the mixed number components a,
b,and c, we end up with operands of varying length. The adder is a streaming operator of fixed size which
requires that inputs arguments be of equal length, while the multiplier is hard-coded to multiply bit strings
of specified lengths. In order to deal with these requirements, I devised a scheme based on “toothed tape,”
which is a control sequence of zero’s terminated by a 1 which indicates the length of an argument. This can
be used, for example, to pad a shorter argument to an addition to match a longer one. Pictured below is a
module maxtt that takes takes two toothed tape arguments and returns a toothed tape of a length which is
the maximum of the two input tapes. This operation can handle arbitrary-length tapes. See the demo file
“demo-acc-add-cpt2.py”.

2



Using the output of maxtt (in fact, a version maxtts which leaves a “shadow” of the terminating 1 of the
shorter input on the output), the following pad module pads data of the shorter length to match the longer
one.

The above modules solve the problem of matching arguments to the addition module, but the problem
of multiplication is more difficult because the length of arguments is hard-coded, we could either (a) use
multipliers of fixed large length, and use pad to pad inputs appropriately, or (b) pain-stakingly compute the
expected length of outputs at each stage and hard-code every multiplier in every row and column to be ready
for the right number of bits. Both of these options are exceedingly unattractive, and therefore I turned my
attention to fixed-point representation.

2.2 Fixed Point Representation

By using fixed-point, I pass around single strings rather than triples, and perform a single arithmetic operation
for each computational (as opposed to representational) arithmetic operation. Albeit, the single operation
has some additional overhead related to fixed-point-ness, but this turns out to be small compared to the
overhead of mixed-number representation.
I chose to used two’s complement (as opposed to signed) representation to handle negative numbers.

Fixed-Point Multiplier

3



See demo file “demo-tcmult.py”

A few words about the multiplier. The uniform structure visible at the center serves the purpose of token-
buffering. The basic concept of the integer multiplier (completed prior to this semester) is sum offset partial
products, as one might do on paper. The extra apparatus for fixed-point two’s complement multiplication is
(i) padding, which is necessary to get all the bits right (I admit that there are some details I haven’t worked
out as to why the padding must be at least some specific amount) (ii) truncation, where the offset is tuned
to correspond to the number of decimal places.

Fixed-Point Divider

4



See demo file “demo-fpdiv.py”

A few words about the divider. Integer division was completed prior to this semester - part of the extra
apparatus, similarly as above, is devoted to padding and truncation. The other part is for two’s complement
conversion. I couldn’t figure out how two’s complement division is supposed to work with negative numbers,
so I take the absolute value, taking note of sign bits, compute the positive quotient, and then invert if
appropriate. Here is the module that takes the absolute value and computes the sign bit. See demo file
“demo-tcai.py”

The module can be recognized from its shape on the left side of the divider. The similar module on the right
also performs two’s complement inversion, but instead of being predicated on the sign bit, it takes a one-bit
input specifying whether or not to invert.

3 LU Decomposition

This diagram was produced at the conclusion of the first half of the project, when the theoretical basis for
the implementation was planned.

5



Filling out the details with modules that are implemented, here is a very messy diagram of how it will look
(in a similar-but-distinct color scheme)

As a parallel computational circuit, this layout is special because products, sums, and quotients that are used
multiple times are broadcast in parallel (arrival in rolling order of geographic proximity) to all owner-computes
modules that require them.

6



4 Conclusion

My stated goal was to implement the LU Decomposition in asynchronous logic automata. I had also initially
stated that the primary challenges associated with this project would be (i) number representation, and (ii)
simulator size. Both of these were indeed obstacles to be reckoned with - although I was successful at not
letting number representation subsume the entire project, it did subsume approximately half of the project,
and all of the implementation time. In the end it was a combination of this and limitations imposed by
simulator size that limited producing a working LU Decomposition.
As has been documented above, I was successful at (i) implementing fixed-point multiplication and division
in two’s complement representation, (ii) producing a detailed plan for using the modules I’ve completed to
lay out an LU Decomposition circuit as soon as simulator size permits.

A Symbolic LU

This symbolic representation was instrumental in helping me formulate the algorithm presented above.

B ALA Model

Asynchronous Logic Automata (ALA) architecture is based on the concept of a lattice of one-bit processors
networked by nearest-neighbor connections. Each processor can be configured to act as one of seven primary
gate types, each of which take either one or two inputs, and can provide output, in the 2-d case, to between
one and four of its physical output channels.

In 2-d, any input or output can be specified as N,S,E, or W. A token is a 0 or a 1, and an input or output
can contain at most one token at an given time. A gate fires as soon as its inputs are full and its outputs are
clear.
In the tables below, an “x” denotes no token. This means, for example, that a crossover gate fires when
either of its inputs arrives and the corresponding output is clear.

Gate Behavior

AND Gate

Glyph

Inputs 2
Outputs 1,2,3,4
Behavior in1 in2 out

0 0 0
0 1 0
1 0 0
1 1 1

WIRE

AND gate with equal inputs

Glyph

Inputs 1
Outputs 1,2,3,4
Behavior in out

0 0
1 1

7



NAND Gate

Glyph

Inputs 2
Outputs 1,2,3,4
Behavior in1 in2 out

0 0 1
0 1 1
1 0 1
1 1 0

INV

NAND gate with equal inputs

Glyph

Inputs 1
Outputs 1,2,3,4
Behavior in out

0 1
1 0

OR Gate

Glyph

Inputs 2
Outputs 1,2,3,4
Behavior in1 in2 out

0 0 0
0 1 1
1 0 1
1 1 1

XOR Gate

Glyph

Inputs 2
Outputs 1,2,3,4
Behavior in1 in2 out

0 0 0
0 1 1
1 0 1
1 1 0

COPY Gate

Glyph

Inputs 2
Outputs 1,2,3,4
Behavior in inc out in′

0 0 0 x
0 1 0 0
1 0 1 x
1 1 1 1

DELETE Gate

Glyph

Inputs 2
Outputs 1,2,3,4
Behavior in inc out

0 0 0
0 1 x
1 0 1
1 1 x

CROSSOVER Gate

Glyph

Inputs 2
Outputs 2
Behavior in1 in2 out1 out2

0 x 0 x
x 0 x 0
1 x 1 x
x 1 x 1
0 0 0 0
0 1 0 1
1 0 1 0
1 1 1 1

Example Circuit

The following example circuit performs multiplication of one 4-bit operand with a second operand whose
word length depends on bit loop initialization.

8



9


