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<Abstract> 

The parallelization of Block-tridiagonal system in TORIC, an electromagnetic wave numerical simulation 

for TOKAMAK analysis, has been demanded for the reduced computation time. For the purpose, I 

implemented a new solver using a parallelization algorithm having both merits of the divide-and-

conquer method and the odd-even cyclic reduction method. The new solver was tested with the current 

solver having a limited parallelization only in 2-dimension poloidal components. By adding 1-

dimensional radial parallelization in the new solver, I obtained about two times faster computation 

speed and about fifty times smaller variance of the results. The use of full 3-dimension processor grid 

will be used to overcome the saturation of the improvement in the computation speed by parallelization 

in TORIC.   
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1 Introduction 

 
TORIC1 is a MPI-Fortran based numerical code which has been developed to see the interaction between 
plasma and electromagnetic wave in TOKAMAK using a finite element method (FEM).(See Figure 1,2) 
The torus shaped geometry of TOKAMAK has three dimension variables along radial (ψ), poloidal (m) 
and toroidal direction. The solver for the code is expressed as  
 
 Li ∙  x  i−1 + Di ∙  x  i + Ri ∙  x  i+1 = y  i  for i=1,… Nψ   

 
Each x  i  is a 6Nm  complex vector of poloidal Fourier components.  
The master matrix is block-tridiagonal with  Li  ,Di  , Ri which size is (6Nm ) × (6Nm ) . 

 
In the current version of TORIC, it is implemented as a serial calculation for the tridiagonal system by 
Thomas algorithm along radial (ψ) direction with parallel block matrix operation for poloidal (m) 
direction on each radial component. When a square of the number of poloidal mode (Nm

2 ) is much 
larger than the number of processors, this implementation is very efficient. But, If the number of 
processor become comparable to Nm

2 , numerous communication between processors deteriorate the 
performance of parallelization and reduce calculation speed. So, currently, the number of processors is 
limited as about 10−2 × Nm

2  by experience. In this project, I will modify TORIC to use more processors 
beyond the current limit and reduce the calculation time. One critical motivation to need a completion 
time as short as possible is to run TORIC several times in a big synthetic code for plasma analysis in a 
TOKAMAK, in the future. But, the current small limit for the number of processors may induce many free 
processors in a big cluster and retard the overall performance of the synthetic code.  
 
When I use typical values of Nψ = 270,  Nm = 255 with 20 processors, the completion time to run 

TORIC one time is about an hour. My purpose is to reduce the time as an order of minutes by the use of 
about 1000 processors. In this sense, we need to make a parallelization of the radial direction as well as 
poloidal direction for the block-tridiagonal system.   
 

 

Figure 1. Schematic view of a Tokamak 

                                                           
1
 M.Brambilla, Plasma Phys.Control.Fusion 41(1999) I-34 

w3.pppl.gov/theory/bin/PSACI-PAC03-Batchelor-Rev.ppt 
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Figure 2  A result of TORIC(240Nr x 255 Nm) in a poloidal cross section of Tokamak. Two arrows indicates poloidal and radial 
directions. J. Wright, PSFC, PoP, 2004   
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2 Selection of an Algorithm 

In this project, I needed to use a parallel algorithm for block-tridiagonal system which is scalable along 
radial direction instead of Thomas algorithm. Two representative algorithms for the system are a divide-
and-conquer method and an odd-even cyclic reduction algorithm. When I evaluate the algorithms for 
TORIC, I have to consider both performance and compatibility with the current TORIC. The existing code 
use BLACS to parallelize the block matrix operation for each radial line. Unfortunately, in BLACS, there is 
no a block-tridiagonal built-in function but a simple tridiagonal factorization function, PDDTTRF, using 
the divide-and-conquer algorithm. There are more or less available free codes written in MPI-Fortran in 
internet, but they also need considerable modification for applying to TORIC. 
 
Before implementing the parallelization routine, I compared many algorithms to choose one having a 

shortest computation time. Also, it should be applicable with the least modification of the existing code. 

In table 1, I summarize the calculation time and maximum memory required for each algorithm based 

on the reference 2, 3, and 4. The calculation times depend on many variables according to the 

algorithms.  

 Cyclic odd-even 
reduction2 

Divide and 
Conquer 3 

Thomas Algorithm  
(𝑃1 = 1)4 

Calculation 
time for 
matrix 
operation 

(log2 𝑃1 + (
𝑛1

2𝑃1
− 1)) ×  

(13𝑀∗ + 6𝐴∗ + 𝐷∗) 

𝑛1

𝑃1

 6𝑀 + 4𝐴 + 2𝐷 + 

𝑃1(3𝑀 + 3𝐴 + 2𝐷) 

𝑛1(3𝑀 + 3𝐴 + 2𝐷) 

Maximum 
memory 
for a 
processor 

𝑛1

𝑃1
(3𝑛2

2 + 2𝑛2)/𝑃2𝑃3 ×  

𝑐𝑜𝑚𝑝𝑙𝑒𝑥 𝑡𝑦𝑝𝑒 

𝑛1

𝑃1
(3𝑛2

2 + 2𝑛2)/𝑃2𝑃3 ×  

𝑐𝑜𝑚𝑝𝑙𝑒𝑥 𝑡𝑦𝑝𝑒 

𝑛1(𝑛2
2 + 2𝑛2)/𝑃2𝑃3 ×  

𝑐𝑜𝑚𝑝𝑙𝑒𝑥 𝑡𝑦𝑝𝑒 

 

 
Table 1. Comparison of Block-Tridiagonal algorithms 
 
𝒏𝟏 = 𝐍𝛙: # 𝒐𝒇 𝒓𝒂𝒅𝒊𝒂𝒍 𝒄𝒐𝒎𝒑𝒐𝒏𝒆𝒏𝒕𝒔, 𝒏𝟐 = (𝟔𝐍𝐦): # 𝒐𝒇 𝒑𝒐𝒍𝒐𝒊𝒅𝒂𝒍 𝒄𝒐𝒎𝒑𝒐𝒏𝒆𝒏𝒕𝒔 

 
𝑻𝒐𝒕𝒂𝒍 # 𝒐𝒇 𝒑𝒓𝒐𝒄𝒆𝒔𝒔𝒐𝒓𝒔 = 𝑷 = 𝑷𝟏𝑷𝟐𝑷𝟑,      𝑷𝟏 = 𝒅𝒊𝒎𝒆𝒏𝒔𝒊𝒐𝒏 𝟏 𝒓𝒂𝒅𝒊𝒂𝒍  

𝑴(# 𝒐𝒇 𝒎𝒖𝒍𝒕𝒊𝒑𝒍𝒄𝒂𝒕𝒊𝒐𝒏𝒔), 𝑨 # 𝒐𝒇 𝒂𝒅𝒅𝒊𝒕𝒊𝒐𝒏𝒔 𝒂𝒏𝒅 𝑫 # 𝒐𝒇 𝒅𝒊𝒗𝒊𝒔𝒊𝒐𝒏𝒔 𝒇𝒐𝒓 𝒂 𝒃𝒍𝒐𝒄𝒌 𝒎𝒂𝒕𝒓𝒊𝒙~𝑶(
𝒏𝟐

𝟐

𝑷𝟐𝑷𝟑
) 

 

For the cyclic odd-even reduction algorithm, I assumed that both 𝑃1 and 𝑛1 are power of 2. In the 

reference 2, they assumed that the number of processors is big enough to be same as 
𝑛1

2
, but it’s not 

practical for our environment. So, I modified the factor of the calculation time in the reference 2 by 

including the serial calculation, (
𝑛1

2𝑃1
− 1), before the reduction process which calculation time is order of 

log2 𝑃1. If I use a variable processor grid and transfer free processors of 𝑃1to  𝑃2𝑃3 in the reduction 

                                                           
2
 H.S.Stone, ACM transactions on Mathematical Software,Vol1(1975),289-307  

3
 H.H.Wang, ACM transactions on Mathematical Software,Vol7(1981),170-183 

4
 http://en.wikipedia.org/wiki/Tridiagonal_matrix_algorithm 
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process, 𝑀∗,𝐴∗, 𝑎𝑛𝑑 𝐷∗ can be reduced a lot, compared to 𝑀, 𝐴 𝑎𝑛𝑑 𝐷 in other algorithms. But, for 

convenience, all values of 𝑀∗,𝐴∗,𝑎𝑛𝑑 𝐷∗ as well as 𝑀, 𝐴 𝑎𝑛𝑑 𝐷 are assumed to be same. 

For the divide and conquer algorithm, when comparing with the result in the reference 3, I don’t count 

the operation which is independent with 𝑃1 and 𝑛1, because the values are small, an order of 1, whereas 

typical values of 𝑃1 and 𝑛1 are an order of 100. Also, I also selected not vector operation but matrix 

operation for blocks to compare the algorithms, because time for matrix operation is dominant in most 

algorithms.  

In Thomas algorithm, due to the intrinsic characteristic of parallelization, as the number of processors 

(𝑃2𝑃3) become to be comparable to the number of components which can be parallelized, (Nm
2 ), 

numerous communication between the processors deteriorate the calculation speed. So, I limited the 

maximum value of  𝑃2𝑃3 as (Nm /32)^2  by experience, when I calculated 𝑀, 𝐴 𝑎𝑛𝑑 𝐷 

              

                                    (a)  𝑷 = 𝟐𝟔                                                                            (b)  𝑷 = 𝟐𝟖 

  

                                    (c)  𝑷 = 𝟐𝟗                                                                            (d)  𝑷 = 𝟐𝟏𝟎 

Figure 3(a)(b)(c)(d), the evaluation of calculation time for cyclic odd-even reduction, divide and conquer and Thomas 

algorithm. 
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As shown in figure 3, total number of processors is very important factor to determine the performance 

of algorithms. Below a certain threshold, such as  𝑷 = 𝟐𝟖 , using the Thomas algorithm with just 2-D 

poloidal parallelization for each matrix operation is the most efficient among the three algorithms 

because the additional parallelization along radial dimension indeed waste times for additional process 

such as making fill-in components when there are enough poloidal modes to be parallelized by the total 

number of processors. While the calculation speed of Thomas algorithm is not increased over the 

threshold, the cyclic odd-even reduction algorithm become faster than others as the number of 

processors are increased. The characteristic of reduction algorithm which speed is proportional to 

log2 𝑃1 become more beneficial. Also, we need to notice on the existence of optimized number for the 

dimension 1 (𝑃1) for both cylic reduction algorithm and divde-and-conquer algorithm. This result should 

be used in mapping 3-D grid in BLACS as shown in figure 4. By the result of the comparison, I decided to 

implement odd-even cyclic reduction algorithm for Block-tridiagonal solver in TORIC. 

One available Fortran code for Block tridiagonal solver by Pascale Garaud, et al.5 was a good reference 

for this project. Their code was originally implemented for the analysis on solar tacholine, and they used 

their own algorithm which was modified from the standard odd-even cyclic reduction algorithm to 

enhance the stability of the calculation6. I adopted their algorithm and wrote new subroutines 

compatible with the existing parallelization routine in TORIC.  

  

                                                           
5
 http://www.soe.ucsc.edu/research/report?ID=487 

6
 P.Garaud, Mon.Not.R.Astron.Soc,391(2008)1239-1258 
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3 Code Implementations 

3.1.  Set up a 3-dimensional (3-D) processor grid  
 
The common parallel block-tridiagonal solvers use 1-dimensional (1-D) processors grid, because a 
algorithm, whether it is divide-and-conquer or odd-even cyclic reduction, is easy to applicable to 1-
dimensional processors grid, and the usual size of blocks,  Nm , is much smaller than the number of 
blocks,Nψ . However, in our case for TORIC, usually, Nm  is big number as much as Nψ , so that it needs to 

parallelize each matrix block as well as tridiagonal system, when considering the calculation speed. 
Therefore, in TORIC, it is good to keep the current 2-D processor gird for matrix operations with Blacs, 
and add 1-dimension for parallelize the tridiagonal system.  
 
Another reason for 3-D processor grid is the concern for memory. If it depends only on 1-dimensional 
grid and the number of processors is limited by Nψ , saving full blocks which size is (6Nm ) × (6Nm ) 

would be impossible for a processors. As the same reason, in current version of TORIC, the data in each 
block is distributed for 2-D grid processors. 
        
The easiest way to implement 3-D grid is to use a context array in BLACS, which context has 2-D 
processors grid as it is already implemented. In BLACS, a context indicates a group within a boundary of 
a communication.  In a context having full processors, it is possible to assign several sub-groups of 
processors corresponding to each context according to the specific maps (See an example in Figure 4) 
 

  
 
Figure4. The use of multi context for 3D processor grid in Blacs. In this example, total processors number is 8(2*2*2) 

 
Using these contexts, I implemented 3-D grid which sub-groups are communicable each other when 
needed in tri-diagonal algorithm.  
 

3.2. Divided forward reductions and Odd-even cyclic reductions 
 

The algorithms by Pascale Garaud can be described as the combination divide-and-conquer method and 

odd-even cyclic reduction. Basically, the forward reductions are executed simultaneously in every group 

as a typical divide-and-conquer method. Except the first group, the reduction processes create fill-in 

matrixes at the last column of the previous group, as shown in figure 5(a). This fill-ins matrixes represent 
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“F _j,k“ in step 1 of figure 5(b) explaining this reduction algorithm. Other operations making this upper 

diagonal matrix having “G_j,k” are same as that of Thomas algorithm. 

  

 

Figure5(a)(b). The full matrix illustration (a) and the code description (b) for the step 1 (The divided forward reduction). 

After step 1, to reduce the number of communications between the groups for the eliminations fill-ins 

matrixes, I used odd-even cyclic algorithm. So, in step 2, I need to redistribute the fill-ins matrixes as the 

tri-diagonal forms composed of the first row in each group shown in figure 6(b). Before carrying out the 

redistribution, the matrixes in last row in each group should be transmitted to the next group. (See 

figure 6(a)). Then, the received right matrix which was “G_j-1,n” is eliminated by the appropriate linear 

operation with a following row and creating another matrix “T3’”. This process in each group continues 

in sequence until the matrixes become the tri-diagonal forms in figure 6(b). This redistribution process is 

formulated in step 2 of figure 6. This step 2 is a process to prepare the cyclic reduction in step 3. 

  

Figure6(a)(b). The full matrix illustration, before step 2 (a) and after step 2 (b).  

The redistributed tri-diagonal forms can be reduced by a typical odd-even cyclic reduction in step 3 of 

the figure 7. This reduction was carried out in log2
(𝑃1+1)

2
  steps (Compared to log2 𝑃1  in Section 2, this 

number is modified for this algorithm). This is, 𝑃1 should be 2n − 1 instead of 2n , and it requires the 
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total number of processor is several times of  2n − 1 .  This characteristic could be a weak point of this 

algorithm in practical computation environment, because a node in a cluster consists of 2n  processors 

typically. It may induce free processors in certain node always. 

    

Figure7. The code description for the step 2 and step 3(Odd-even cyclic reduction). 

 
3.3.  Cyclic substitutions and Divided backward substitutions 

 

In the end of the cyclic reduction in step 3, only one matrix T2 remains in a row, so I can obtain one 

component of solution by “x=T2\y”.  The value is substituted to find all other solutions in step 4 and step 

5 as shown in figure 8. In step 4, the cyclic back substitution is executed in log2
(𝑃1+1)

2
  step same as the 

cyclic reduction. Then, in each group, the serial back substitution continues simultaneously in step 5. In 

the step, each group except the first one should have the information of the solution in the previous 

group, “x_j-1”, to evaluate the term contributed by fill-ins matrix “F_j,k” in the solution. 
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Figure8. The code description for the step 4(cyclic substitution) and step 5(divided back substitution). 
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4 Result and Discussions 

 
4.1. Test of the new solver in terms of processor grids 
 

After implementing the algorithm, the new solver was tested with only use of dimension 1(P1) among 
3D grid (i.e.  [𝑷𝟏,𝑷𝟐,𝑷𝟑] =[7,1,1] or [15 1,1]), in normal running condition of TORIC, Nψ = 270,  Nm = 255. 

The results of electric fields and the derivatives of the fields are almost same as the existing solver of 
TORIC within relative error 0.1%. The agreement of the result indicates the right implementation of the 
algorithm and good MPI communications between groups.  
 
However, I am still debugging the solver using the full 3D grid because it makes weird small number in 
the results. The figure 9 represents a part of the result in step 2 of the algorithm, involved in same group, 
produced by same code using the grid (7,1,1) and grid (7,2,1). The first one (a) is the case making good 
result whereas the second one (b) is showing underflow in the result. “iam 6” in (a) and “ iam 12” in (b) 
are located in a same calculation position of the seventh group having same blocks size 39. The fact that 
Gk are same for both case indicates that there is no error until step 1.  Although Gk is same for the both 
case, T3 become smaller and smaller very rapidly as the redistribution is going (e.g. T3k from o(10^-26) 
to o(10^-45), when k from 1 to 3) in case of (b) when using the full grid (7,2,1) by the equation T3’=-
T3*Gk in step 2. This underflow may be caused by just misuse of Blacs routine when I add more 2 
dimension to the matrix operation.  
 

 
Figure9(a)(b).  A part of result in step 2 with the processor grid of (7,1,1) (a) and (7,2,1).  

 
4.2. Computation speed of the code 

 
The computation speed of new solver is well evaluated when using only 𝑷𝟏 in 3D. It is compared with the 
existing solver of TORIC using a poloidal 2D grid corresponding to 𝑷𝟐 𝑷𝟑 in 3D grid. The result is very 
encouraging, because the new algorithm was turned out almost two times faster than the existing one 
in normal running condition of TORIC. While the time to complete a running is 881 second for the 
existing solver with 64 processors, it is 568 second for new solver with 63 processor(Due to the 
algorithm, it used 2^6-1).  
 
Furthermore, the new solver has another good characteristic showing retardation of the saturation 
point for the computation speed improvement by increased processors. Because both cases are not a 
full 3D grid, they cannot help declining the improvement of computation speed as the number of 
processors increased to the saturation point. In the figure 10, the current solver shows the somewhat 
flat slope when the number of processors becomes 128, whereas the new solver represents the 
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continuously deceasing slope, even though the slope is decreased substantially. In the largest number of 
available processors in Loki cluster, 256, the speed of the new solver is faster more than two times than 
old solver. The completion time with new solver is 363 sec, whereas it is 855 sec with the old solver. This 
speed of new solver is at the level satisfying the original purpose of this project. 
 

 
Figure10. The comparison of a run time between old solver and new solver in terms of the number of processors. 

 

4.3. Stability and accuracy of the results  
 

The representing number of the TORIC result is a power absorption by plasma. This value used in 
normalization of the full electric fields results. Using the new solver, I obtained an average value, 8.533 
MW/KA^2 which is close to the result of the old solver within 0.1%. One good point of the new solver is 
better stability of the result in terms of the number of processors. As shown in figure 11, a variance of 
the result by the old solver is about 50 times of that by the new solver. This precision may come from 
the characteristic of the new algorithm. Because the sequential reductions in step 1 are executed in 
divided groups, the accumulated error can be smaller than that of the old solver which does the 
sequential reduction for all range of radial components by Thomas algorithm. This characteristic would 
be very beneficial to calculate the sensitive figures in the result such as induced current drive by the 
wave in TORIC.  
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Figure11. The comparison of power absorption between by plama in old solver and new solver of TORIC in terms of the 

number of processors. 
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5 Conclusions and Future works 
 

In this project, I made a new solver of TORIC for the parallelization of Block Tri-diagonal system. This 

solver uses the algorithm suggested by Garaud in the reference 6 which seems like a combination of the 

divide-and-conquer method and odd-even cyclic reduction. The new solver yields very satisfying results 

with fast computation speed and good stability as I mention in section 4. When benchmarking with the 

current solver parallelizing only poloidal components and using serial Thomas algorithm for radial 

components, the new solver showing about two time faster computation speed and about 50 times 

smaller variance of the result.  

 

However, I am still developing the new solver to use the full 3-D processor grid instead of 1 dimension 

parallelization of radial components among Blacs 3-D grids. The use of full 3-D processor grid including 

both radial and poloidal parallelization would be a breakthrough of the saturation for the improvement 

of the computation speed by many processors. So, in full 3-D grid, if I use more than 256 processors for 

TORIC with Nψ = 270,  Nm = 255, the completion time can be expected to be less than 5 minutes. Also, 

it needs to do careful comparisons to decide the value of 𝑷𝟏 among total processors by the actual 

computation speed instead of estimation by the theories as I did in section 2. Finally, this optimization 

for the ratio of the 3-D processor grid, (𝑷𝟏,𝑷𝟐,𝑷𝟑), should be applied in new solver to minimize 

computation time. 
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