
 Progress Report, Ver 1.5

<Final Report-18.337>

The parallelization of a block-tridiagonal matrix system
for an electromagnetic wave simulation

in TOKAMAK(TORIC) by MPI Fortran

Jungpyo Lee

Graduate Student in a department of

Nuclear Science & Engineering at MIT

Plasma Science & Fusion Center, Cambridge, MA, 02139

Office: 617-253-2374

jungpyo@mit.edu

05/13/2009

<Abstract>

The parallelization of Block-tridiagonal system in TORIC, an electromagnetic wave numerical simulation

for TOKAMAK analysis, has been demanded for the reduced computation time. For the purpose, I

implemented a new solver using a parallelization algorithm having both merits of the divide-and-

conquer method and the odd-even cyclic reduction method. The new solver was tested with the current

solver having a limited parallelization only in 2-dimension poloidal components. By adding 1-

dimensional radial parallelization in the new solver, I obtained about two times faster computation

speed and about fifty times smaller variance of the results. The use of full 3-dimension processor grid

will be used to overcome the saturation of the improvement in the computation speed by parallelization

in TORIC.

mailto:jungpyo@mit.edu

ii

<Table of Contents>

1. Introduction ……………………………………………………………………………1

2. Selection of an algorithm ………………………………………………………………………..3

3. Code Implementations ………………………………………………………………………………6

3.1. Set up a 3-dimensional (3-D) processor grid ………………………………………..……………….6

3.2. Divided forward reductions and odd-even cyclic reductions ………………………………………6

3.3. Cyclic substitution and divided backward Substitution ……………………………….…………………..8

4. Results and discussion …………………………………………………………………………...10

4.1. Test of the new solver in terms of processor grids….……………………………………………..10

4.2. Computation speed of the code ………………………………………………………………..10

4.2. Stabilities and accuracy of the results …………………………………..………………………………..11

5. Conclusions and Future works …………………..…………………………………………...13

1

1 Introduction

TORIC1 is a MPI-Fortran based numerical code which has been developed to see the interaction between
plasma and electromagnetic wave in TOKAMAK using a finite element method (FEM).(See Figure 1,2)
The torus shaped geometry of TOKAMAK has three dimension variables along radial (ψ), poloidal (m)
and toroidal direction. The solver for the code is expressed as

 Li ∙ x i−1 + Di ∙ x i + Ri ∙ x i+1 = y i for i=1,… Nψ

Each x i is a 6Nm complex vector of poloidal Fourier components.
The master matrix is block-tridiagonal with Li ,Di , Ri which size is (6Nm) × (6Nm) .

In the current version of TORIC, it is implemented as a serial calculation for the tridiagonal system by
Thomas algorithm along radial (ψ) direction with parallel block matrix operation for poloidal (m)
direction on each radial component. When a square of the number of poloidal mode (Nm

2) is much
larger than the number of processors, this implementation is very efficient. But, If the number of
processor become comparable to Nm

2 , numerous communication between processors deteriorate the
performance of parallelization and reduce calculation speed. So, currently, the number of processors is
limited as about 10−2 × Nm

2 by experience. In this project, I will modify TORIC to use more processors
beyond the current limit and reduce the calculation time. One critical motivation to need a completion
time as short as possible is to run TORIC several times in a big synthetic code for plasma analysis in a
TOKAMAK, in the future. But, the current small limit for the number of processors may induce many free
processors in a big cluster and retard the overall performance of the synthetic code.

When I use typical values of Nψ = 270, Nm = 255 with 20 processors, the completion time to run

TORIC one time is about an hour. My purpose is to reduce the time as an order of minutes by the use of
about 1000 processors. In this sense, we need to make a parallelization of the radial direction as well as
poloidal direction for the block-tridiagonal system.

Figure 1. Schematic view of a Tokamak

1
 M.Brambilla, Plasma Phys.Control.Fusion 41(1999) I-34

w3.pppl.gov/theory/bin/PSACI-PAC03-Batchelor-Rev.ppt

2

Figure 2 A result of TORIC(240Nr x 255 Nm) in a poloidal cross section of Tokamak. Two arrows indicates poloidal and radial
directions. J. Wright, PSFC, PoP, 2004

3

2 Selection of an Algorithm

In this project, I needed to use a parallel algorithm for block-tridiagonal system which is scalable along
radial direction instead of Thomas algorithm. Two representative algorithms for the system are a divide-
and-conquer method and an odd-even cyclic reduction algorithm. When I evaluate the algorithms for
TORIC, I have to consider both performance and compatibility with the current TORIC. The existing code
use BLACS to parallelize the block matrix operation for each radial line. Unfortunately, in BLACS, there is
no a block-tridiagonal built-in function but a simple tridiagonal factorization function, PDDTTRF, using
the divide-and-conquer algorithm. There are more or less available free codes written in MPI-Fortran in
internet, but they also need considerable modification for applying to TORIC.

Before implementing the parallelization routine, I compared many algorithms to choose one having a

shortest computation time. Also, it should be applicable with the least modification of the existing code.

In table 1, I summarize the calculation time and maximum memory required for each algorithm based

on the reference 2, 3, and 4. The calculation times depend on many variables according to the

algorithms.

 Cyclic odd-even
reduction2

Divide and
Conquer 3

Thomas Algorithm
(𝑃1 = 1)4

Calculation
time for
matrix
operation

(log2 𝑃1 + (
𝑛1

2𝑃1
− 1)) ×

(13𝑀∗ + 6𝐴∗ + 𝐷∗)

𝑛1

𝑃1

 6𝑀 + 4𝐴 + 2𝐷 +

𝑃1(3𝑀 + 3𝐴 + 2𝐷)

𝑛1(3𝑀 + 3𝐴 + 2𝐷)

Maximum
memory
for a
processor

𝑛1

𝑃1
(3𝑛2

2 + 2𝑛2)/𝑃2𝑃3 ×

𝑐𝑜𝑚𝑝𝑙𝑒𝑥 𝑡𝑦𝑝𝑒

𝑛1

𝑃1
(3𝑛2

2 + 2𝑛2)/𝑃2𝑃3 ×

𝑐𝑜𝑚𝑝𝑙𝑒𝑥 𝑡𝑦𝑝𝑒

𝑛1(𝑛2
2 + 2𝑛2)/𝑃2𝑃3 ×

𝑐𝑜𝑚𝑝𝑙𝑒𝑥 𝑡𝑦𝑝𝑒

Table 1. Comparison of Block-Tridiagonal algorithms

𝒏𝟏 = 𝐍𝛙: # 𝒐𝒇 𝒓𝒂𝒅𝒊𝒂𝒍 𝒄𝒐𝒎𝒑𝒐𝒏𝒆𝒏𝒕𝒔, 𝒏𝟐 = (𝟔𝐍𝐦): # 𝒐𝒇 𝒑𝒐𝒍𝒐𝒊𝒅𝒂𝒍 𝒄𝒐𝒎𝒑𝒐𝒏𝒆𝒏𝒕𝒔

𝑻𝒐𝒕𝒂𝒍 # 𝒐𝒇 𝒑𝒓𝒐𝒄𝒆𝒔𝒔𝒐𝒓𝒔 = 𝑷 = 𝑷𝟏𝑷𝟐𝑷𝟑, 𝑷𝟏 = 𝒅𝒊𝒎𝒆𝒏𝒔𝒊𝒐𝒏 𝟏 𝒓𝒂𝒅𝒊𝒂𝒍

𝑴(# 𝒐𝒇 𝒎𝒖𝒍𝒕𝒊𝒑𝒍𝒄𝒂𝒕𝒊𝒐𝒏𝒔), 𝑨 # 𝒐𝒇 𝒂𝒅𝒅𝒊𝒕𝒊𝒐𝒏𝒔 𝒂𝒏𝒅 𝑫 # 𝒐𝒇 𝒅𝒊𝒗𝒊𝒔𝒊𝒐𝒏𝒔 𝒇𝒐𝒓 𝒂 𝒃𝒍𝒐𝒄𝒌 𝒎𝒂𝒕𝒓𝒊𝒙~𝑶(
𝒏𝟐

𝟐

𝑷𝟐𝑷𝟑
)

For the cyclic odd-even reduction algorithm, I assumed that both 𝑃1 and 𝑛1 are power of 2. In the

reference 2, they assumed that the number of processors is big enough to be same as
𝑛1

2
, but it’s not

practical for our environment. So, I modified the factor of the calculation time in the reference 2 by

including the serial calculation, (
𝑛1

2𝑃1
− 1), before the reduction process which calculation time is order of

log2 𝑃1. If I use a variable processor grid and transfer free processors of 𝑃1to 𝑃2𝑃3 in the reduction

2
 H.S.Stone, ACM transactions on Mathematical Software,Vol1(1975),289-307

3
 H.H.Wang, ACM transactions on Mathematical Software,Vol7(1981),170-183

4
 http://en.wikipedia.org/wiki/Tridiagonal_matrix_algorithm

4

process, 𝑀∗,𝐴∗, 𝑎𝑛𝑑 𝐷∗ can be reduced a lot, compared to 𝑀, 𝐴 𝑎𝑛𝑑 𝐷 in other algorithms. But, for

convenience, all values of 𝑀∗,𝐴∗,𝑎𝑛𝑑 𝐷∗ as well as 𝑀, 𝐴 𝑎𝑛𝑑 𝐷 are assumed to be same.

For the divide and conquer algorithm, when comparing with the result in the reference 3, I don’t count

the operation which is independent with 𝑃1 and 𝑛1, because the values are small, an order of 1, whereas

typical values of 𝑃1 and 𝑛1 are an order of 100. Also, I also selected not vector operation but matrix

operation for blocks to compare the algorithms, because time for matrix operation is dominant in most

algorithms.

In Thomas algorithm, due to the intrinsic characteristic of parallelization, as the number of processors

(𝑃2𝑃3) become to be comparable to the number of components which can be parallelized, (Nm
2),

numerous communication between the processors deteriorate the calculation speed. So, I limited the

maximum value of 𝑃2𝑃3 as (Nm /32)^2 by experience, when I calculated 𝑀, 𝐴 𝑎𝑛𝑑 𝐷

 (a) 𝑷 = 𝟐𝟔 (b) 𝑷 = 𝟐𝟖

 (c) 𝑷 = 𝟐𝟗 (d) 𝑷 = 𝟐𝟏𝟎

Figure 3(a)(b)(c)(d), the evaluation of calculation time for cyclic odd-even reduction, divide and conquer and Thomas

algorithm.

10
0

10
1

10
2

10
7

10
8

10
9

10
10

P1,# of processors in dimension1

m
a
tr

ix
 o

p
e
ra

ti
o
n

 c
a
lc

u
la

ti
o

n
 t

im
e

[A
.U

.]

n1=2
8
,n2=6*2

8
,total processors=2

6

Cyclic odd-even reduction

divide-conquer

Thomas

10
0

10
1

10
2

10
3

10
7

10
8

10
9

10
10

P1,# of processors in dimension1

m
a
tr

ix
 o

p
e
ra

ti
o
n

 c
a
lc

u
la

ti
o

n
 t

im
e

[A
.U

.]

n1=2
8
,n2=6*2

8
,total processors=2

8

Cyclic odd-even reduction

divide-conquer

Thomas

10
0

10
1

10
2

10
3

10
7

10
8

10
9

10
10

P1,# of processors in dimension1

m
a
tr

ix
 o

p
e
ra

ti
o
n

 c
a
lc

u
la

ti
o

n
 t

im
e

[A
.U

.]

n1=2
8
,n2=6*2

8
,total processors=2

9

Cyclic odd-even reduction

divide-conquer

Thomas

10
0

10
1

10
2

10
3

10
4

10
6

10
7

10
8

10
9

10
10

10
11

P1,# of processors in dimension1

m
a
tr

ix
 o

p
e
ra

ti
o
n

 c
a
lc

u
la

ti
o

n
 t

im
e

[A
.U

.]

n1=2
8
,n2=6*2

8
,total processors=2

10

Cyclic odd-even reduction

divide-conquer

Thomas

5

As shown in figure 3, total number of processors is very important factor to determine the performance

of algorithms. Below a certain threshold, such as 𝑷 = 𝟐𝟖 , using the Thomas algorithm with just 2-D

poloidal parallelization for each matrix operation is the most efficient among the three algorithms

because the additional parallelization along radial dimension indeed waste times for additional process

such as making fill-in components when there are enough poloidal modes to be parallelized by the total

number of processors. While the calculation speed of Thomas algorithm is not increased over the

threshold, the cyclic odd-even reduction algorithm become faster than others as the number of

processors are increased. The characteristic of reduction algorithm which speed is proportional to

log2 𝑃1 become more beneficial. Also, we need to notice on the existence of optimized number for the

dimension 1 (𝑃1) for both cylic reduction algorithm and divde-and-conquer algorithm. This result should

be used in mapping 3-D grid in BLACS as shown in figure 4. By the result of the comparison, I decided to

implement odd-even cyclic reduction algorithm for Block-tridiagonal solver in TORIC.

One available Fortran code for Block tridiagonal solver by Pascale Garaud, et al.5 was a good reference

for this project. Their code was originally implemented for the analysis on solar tacholine, and they used

their own algorithm which was modified from the standard odd-even cyclic reduction algorithm to

enhance the stability of the calculation6. I adopted their algorithm and wrote new subroutines

compatible with the existing parallelization routine in TORIC.

5
 http://www.soe.ucsc.edu/research/report?ID=487

6
 P.Garaud, Mon.Not.R.Astron.Soc,391(2008)1239-1258

6

3 Code Implementations

3.1. Set up a 3-dimensional (3-D) processor grid

The common parallel block-tridiagonal solvers use 1-dimensional (1-D) processors grid, because a
algorithm, whether it is divide-and-conquer or odd-even cyclic reduction, is easy to applicable to 1-
dimensional processors grid, and the usual size of blocks, Nm , is much smaller than the number of
blocks,Nψ . However, in our case for TORIC, usually, Nm is big number as much as Nψ , so that it needs to

parallelize each matrix block as well as tridiagonal system, when considering the calculation speed.
Therefore, in TORIC, it is good to keep the current 2-D processor gird for matrix operations with Blacs,
and add 1-dimension for parallelize the tridiagonal system.

Another reason for 3-D processor grid is the concern for memory. If it depends only on 1-dimensional
grid and the number of processors is limited by Nψ , saving full blocks which size is (6Nm) × (6Nm)

would be impossible for a processors. As the same reason, in current version of TORIC, the data in each
block is distributed for 2-D grid processors.

The easiest way to implement 3-D grid is to use a context array in BLACS, which context has 2-D
processors grid as it is already implemented. In BLACS, a context indicates a group within a boundary of
a communication. In a context having full processors, it is possible to assign several sub-groups of
processors corresponding to each context according to the specific maps (See an example in Figure 4)

Figure4. The use of multi context for 3D processor grid in Blacs. In this example, total processors number is 8(2*2*2)

Using these contexts, I implemented 3-D grid which sub-groups are communicable each other when
needed in tri-diagonal algorithm.

3.2. Divided forward reductions and Odd-even cyclic reductions

The algorithms by Pascale Garaud can be described as the combination divide-and-conquer method and

odd-even cyclic reduction. Basically, the forward reductions are executed simultaneously in every group

as a typical divide-and-conquer method. Except the first group, the reduction processes create fill-in

matrixes at the last column of the previous group, as shown in figure 5(a). This fill-ins matrixes represent

7

“F _j,k“ in step 1 of figure 5(b) explaining this reduction algorithm. Other operations making this upper

diagonal matrix having “G_j,k” are same as that of Thomas algorithm.

Figure5(a)(b). The full matrix illustration (a) and the code description (b) for the step 1 (The divided forward reduction).

After step 1, to reduce the number of communications between the groups for the eliminations fill-ins

matrixes, I used odd-even cyclic algorithm. So, in step 2, I need to redistribute the fill-ins matrixes as the

tri-diagonal forms composed of the first row in each group shown in figure 6(b). Before carrying out the

redistribution, the matrixes in last row in each group should be transmitted to the next group. (See

figure 6(a)). Then, the received right matrix which was “G_j-1,n” is eliminated by the appropriate linear

operation with a following row and creating another matrix “T3’”. This process in each group continues

in sequence until the matrixes become the tri-diagonal forms in figure 6(b). This redistribution process is

formulated in step 2 of figure 6. This step 2 is a process to prepare the cyclic reduction in step 3.

Figure6(a)(b). The full matrix illustration, before step 2 (a) and after step 2 (b).

The redistributed tri-diagonal forms can be reduced by a typical odd-even cyclic reduction in step 3 of

the figure 7. This reduction was carried out in log2
(𝑃1+1)

2
 steps (Compared to log2 𝑃1 in Section 2, this

number is modified for this algorithm). This is, 𝑃1 should be 2n − 1 instead of 2n , and it requires the

8

total number of processor is several times of 2n − 1 . This characteristic could be a weak point of this

algorithm in practical computation environment, because a node in a cluster consists of 2n processors

typically. It may induce free processors in certain node always.

Figure7. The code description for the step 2 and step 3(Odd-even cyclic reduction).

3.3. Cyclic substitutions and Divided backward substitutions

In the end of the cyclic reduction in step 3, only one matrix T2 remains in a row, so I can obtain one

component of solution by “x=T2\y”. The value is substituted to find all other solutions in step 4 and step

5 as shown in figure 8. In step 4, the cyclic back substitution is executed in log2
(𝑃1+1)

2
 step same as the

cyclic reduction. Then, in each group, the serial back substitution continues simultaneously in step 5. In

the step, each group except the first one should have the information of the solution in the previous

group, “x_j-1”, to evaluate the term contributed by fill-ins matrix “F_j,k” in the solution.

9

Figure8. The code description for the step 4(cyclic substitution) and step 5(divided back substitution).

10

4 Result and Discussions

4.1. Test of the new solver in terms of processor grids

After implementing the algorithm, the new solver was tested with only use of dimension 1(P1) among
3D grid (i.e. [𝑷𝟏,𝑷𝟐,𝑷𝟑] =[7,1,1] or [15 1,1]), in normal running condition of TORIC, Nψ = 270, Nm = 255.

The results of electric fields and the derivatives of the fields are almost same as the existing solver of
TORIC within relative error 0.1%. The agreement of the result indicates the right implementation of the
algorithm and good MPI communications between groups.

However, I am still debugging the solver using the full 3D grid because it makes weird small number in
the results. The figure 9 represents a part of the result in step 2 of the algorithm, involved in same group,
produced by same code using the grid (7,1,1) and grid (7,2,1). The first one (a) is the case making good
result whereas the second one (b) is showing underflow in the result. “iam 6” in (a) and “ iam 12” in (b)
are located in a same calculation position of the seventh group having same blocks size 39. The fact that
Gk are same for both case indicates that there is no error until step 1. Although Gk is same for the both
case, T3 become smaller and smaller very rapidly as the redistribution is going (e.g. T3k from o(10^-26)
to o(10^-45), when k from 1 to 3) in case of (b) when using the full grid (7,2,1) by the equation T3’=-
T3*Gk in step 2. This underflow may be caused by just misuse of Blacs routine when I add more 2
dimension to the matrix operation.

Figure9(a)(b). A part of result in step 2 with the processor grid of (7,1,1) (a) and (7,2,1).

4.2. Computation speed of the code

The computation speed of new solver is well evaluated when using only 𝑷𝟏 in 3D. It is compared with the
existing solver of TORIC using a poloidal 2D grid corresponding to 𝑷𝟐 𝑷𝟑 in 3D grid. The result is very
encouraging, because the new algorithm was turned out almost two times faster than the existing one
in normal running condition of TORIC. While the time to complete a running is 881 second for the
existing solver with 64 processors, it is 568 second for new solver with 63 processor(Due to the
algorithm, it used 2^6-1).

Furthermore, the new solver has another good characteristic showing retardation of the saturation
point for the computation speed improvement by increased processors. Because both cases are not a
full 3D grid, they cannot help declining the improvement of computation speed as the number of
processors increased to the saturation point. In the figure 10, the current solver shows the somewhat
flat slope when the number of processors becomes 128, whereas the new solver represents the

11

continuously deceasing slope, even though the slope is decreased substantially. In the largest number of
available processors in Loki cluster, 256, the speed of the new solver is faster more than two times than
old solver. The completion time with new solver is 363 sec, whereas it is 855 sec with the old solver. This
speed of new solver is at the level satisfying the original purpose of this project.

Figure10. The comparison of a run time between old solver and new solver in terms of the number of processors.

4.3. Stability and accuracy of the results

The representing number of the TORIC result is a power absorption by plasma. This value used in
normalization of the full electric fields results. Using the new solver, I obtained an average value, 8.533
MW/KA^2 which is close to the result of the old solver within 0.1%. One good point of the new solver is
better stability of the result in terms of the number of processors. As shown in figure 11, a variance of
the result by the old solver is about 50 times of that by the new solver. This precision may come from
the characteristic of the new algorithm. Because the sequential reductions in step 1 are executed in
divided groups, the accumulated error can be smaller than that of the old solver which does the
sequential reduction for all range of radial components by Thomas algorithm. This characteristic would
be very beneficial to calculate the sensitive figures in the result such as induced current drive by the
wave in TORIC.

10
1

10
2

10
3

10
3

10
4

numer of processors

E
xe

c
u

ti
o

n
 t

im
e
(s

e
c)

TORIC run time when nelm=270, nmod=255

old solver(Thomas) P
tot

=P
2
P

3

new solver(divide+cyclic) P
tot

=P
1

12

Figure11. The comparison of power absorption between by plama in old solver and new solver of TORIC in terms of the

number of processors.

10
1

10
2

10
3

0.8531

0.8531

0.8532

0.8532

0.8532

0.8532

0.8532

0.8533

0.8533

0.8533

numer of processors

P
la

s
m

a
 P

o
w

e
r

A
b

so
rp

ti
o

n
(M

W
/K

A2
)

TORIC result when nelm=270, nmod=255

old solver(Thomas) P
tot

=P
2
P

3

new solver(divide+cyclic) P
tot

=P
1

13

5 Conclusions and Future works

In this project, I made a new solver of TORIC for the parallelization of Block Tri-diagonal system. This

solver uses the algorithm suggested by Garaud in the reference 6 which seems like a combination of the

divide-and-conquer method and odd-even cyclic reduction. The new solver yields very satisfying results

with fast computation speed and good stability as I mention in section 4. When benchmarking with the

current solver parallelizing only poloidal components and using serial Thomas algorithm for radial

components, the new solver showing about two time faster computation speed and about 50 times

smaller variance of the result.

However, I am still developing the new solver to use the full 3-D processor grid instead of 1 dimension

parallelization of radial components among Blacs 3-D grids. The use of full 3-D processor grid including

both radial and poloidal parallelization would be a breakthrough of the saturation for the improvement

of the computation speed by many processors. So, in full 3-D grid, if I use more than 256 processors for

TORIC with Nψ = 270, Nm = 255, the completion time can be expected to be less than 5 minutes. Also,

it needs to do careful comparisons to decide the value of 𝑷𝟏 among total processors by the actual

computation speed instead of estimation by the theories as I did in section 2. Finally, this optimization

for the ratio of the 3-D processor grid, (𝑷𝟏,𝑷𝟐,𝑷𝟑), should be applied in new solver to minimize

computation time.

14

<Acknowledgement>

For this progress report, Prof. Alan Edelman suggested a good guideline for me to complete it. He taught

me many parallelization concepts in computation and gave me detailed feedback for the project such as

the use of odd-even cyclic algorithm. Two Scientist in PSFC, Dr. Paul Bonoli and Dr. John Wright,

participated in this project as advisors. Especially, Dr. Wright suggested this topic for me, and he gave

me a lot of practical advice from the experience obtained when he made the current parallel version of

TORIC. We are in cooperation to implement the block-tridiagonal solver in TORIC, and we hope that the

solver will be useful for the future research on analysis of interaction between plasma and

electromagnetic wave in TOKAMAK.

