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1 Introduction

The basic aims of parallel programming are to decrease the runtime for the
solution to a problem and increase the size of the problem that can be solved.
The conventional parallel programming practices involve a a pure OpenMP im-
plementation on a shared memory architecture (Fig. 1) or a pure MPI imple-
mentation on distributed memory computer architectures (Fig. 2). The largest
and fastest computers today employ both shared and distributed memory ar-
chitecture (Fig. 3). This gives a �exibility in tuning the parallelism in the
programs to generate maximum e�ciency and balance the computational and
communication loads in the program. A wise implementation of hybrid parallel
programs utilizing the modern hybrid computer hardware can generate mas-
sive speedups in the otherwise pure MPI and pure OpenMP implementations.
A brief introduction to OpenMP, MPI and Hybrid programs is given in the
following subsections.

OpenMP

OpenMP is an API (Application Programming Interface) for writing multi-
threaded applications. It takes the advantage of multicore (multiple processors)
on a single memory. They are a part of standard libraries for C, C++ and

Figure 1: Shared memory, ideal for OpenMP
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Figure 2: Distributed memory, ideal for MPI

Figure 3: Shared and distributed memory, modern computer architecture. Suit-
able for MPI and hybrid implementations
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FORTRAN. The pros of pure OpenMP implementations include easiness to im-
plement, low latency and high bandwidth, implicit communication and dynamic
load balancing. However, it can be used on shared memory machines only, can
be scaled only withing one node and has a random threading order.

MPI (Message Passing Interface)

The fundamental limitation of OpenMP, that it can be used on shared memory
machine only, is solved with MPI. MPI is portable to distributed and shared
memory machines. It scales to multiple shared memory machines with no data
placement problems. However, it is di�cult to develop and debug, it has high
latency and low bandwidth and explicit communication is required. Even if there
are multiple processors sharing a memory, MPI implementations will treat each
processor as separate and explicit communications between them is needed,
despite the fact that memory is being shared. Like OpenMP, C, C++ and
FORTRAN bindings of MPI are easily available.

Hybrid concept

Hybrid programming is an attempt to utilize the best from both the above
scenarios. Hybrid programming may not always be bene�cial, since it depends
heavily on the problem statement and computational and communication loads.
However, if it works on a problem, it can give considerable speedups and better
scaling. It is a modern software trend for the current hybrid hardware architec-
tures. The basic concept is to use MPI across the nodes and OpenMP within
the node. This avoids the extra communication overhead with MPI within a
single node.

In this project, a hybrid implementation of a Laplace solver is compared
with pure MPI implementation. The programming language C is used for this
work. Pure MPI program and Hybrid programs were developed for this work.

2 Problem Statement

A simple elliptic Laplace equation is solved. The equation is mathematically
expressed as

∂u

∂x2
+

∂u

∂y2
= 0 (1)

where u = u(x, y)is an unknown scalar potential subjected to the following
boundary conditions:

u(x, 0) = sin(πx) 0 ≤ x ≤ 1

u(x, 1) = sin(πx)e−x 0 ≤ x ≤ 1
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Figure 4: Solution to the de�ned problem

u(0, y) = u(1, y) = 0 = 0 0 ≤ y ≤ 1

Such boundary value problems are very common in physical problems. Ex-
ample of a physical problem having similar mathematical description is a two-
dimensional steady-state heat equation. This particular problem statement is
chosen here since its analytical solution is easy to obtain. It can be expressed
as

u(x, y) = sin(πx)e−πy; 0 ≤ x ≤ 1; 0 ≤ y ≤ 1 (2)

Equation 1 is solved numerically using �nite di�erences and the convergence
test will be based on this analytical solution. The solution to this problem is
shown in Fig. 4. The codes are validated by comparing it to this solution.
This problem can be physically interpreted as a steady state heat transfer prob-
lem in a room with a heater at one of the walls. Such problems have similar
mathematical nature.
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Figure 5: Schematic of the two-dimensional grid.

3 Numerical Scheme

A uniform two-dimensional grid is used. Equation 1 can be discretized, using
central di�erences, in an algebraic equation

un+1
i,j =

uni−1,j + uni+1,j + uni,j−1 + uni,j+1

4
i = 1, .......,m; j = 1, ......,m

(3)
where n + 1denotes the next iteration and ndenotes the current iteration,

while
uni−1,j = un((i− 1)h, jh)

where h = 1
m+1 is the grid resolution (Note: A uniform grid resolution in both

the directions is assumed). This scheme is well known as the Jacobi iterative
scheme for Laplace equation. A all zero-value initial guess of the solution is
taken and Jacobi iterations are performed until convergence is obtained. A
better initial solution could be chosen to improve the convergence rate, but the
purpose of this work is to have longer running codes, to measure wall clock time
of the code for performance analysis. The grid schematic is shown in Fig. ??.

4 Grid Decomposition

The parallel distributed uniform grid is shown in Fig. 6. The thick red lines
show the decomposition of the grid among 4 processors. Since the grid is uni-
form, and two-dimensional, there are typically two choices of domain decompo-
sition , one-dimensional or two-dimensional. Assuming p processors are used,
the computational domain is split in phorizontal strips as shown in Fig. 6. To
have better load balancing, each processor is given an equal chunk of the grid,
approximately m×m/p size each. Each processor communicates with the pro-
cessor above (north) and below (south) (see Fig. 6) after every iteration, to
compute the solution using the discretization given by Eq. 3.
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Figure 6: The uniform two-dimensional grid distributed on 4 processors

5 Computational Resource

Pharos cluster (a shared and distributed memory architecture), used by the
Reacting Gas Dynamics Laboratory (Dept. of Mechanical Engineering, MIT),
is used for the parallel simulations. Pharos consists of about 60 Intel Xeon -
Harpertown nodes, each consisting of dual quad-core CPUs (8 processors) of
2.66 GHz speed.

The pure MPI implementation takes pprocessors such that few or none of
them may belong to the same node. This implies that there are MPI calls
between all the pprocessors. The hybrid implementation takes pprocessors in
such a way that there are xnodes and 4x = p. This implies that there are MPI
calls between xnodes and OpenMP calls between 4 processors on each node
which share the memory. These two con�gurations are reported as �MPI� and
�Hybrid� in the following section.

Hybrid Execution Scenario

A single MPI process is launched on each SMP node (Symmetric Multi-Processor
- with shared memory). Each process spawns 4 threads on each of these SMP
nodes. After every parallel OMP iteration within each SMP node, the master
thread of each SMP nodes communicates with other master threads of other
MPI nodes using MPI calls. Again the iteration in OpenMP within each node
is carried out with threads until it is complete. This scenario is schematically
shown in Fig. 7.
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Figure 7: Hybrid Execution Scenario, �gure adopted from Reference 5

6 Results

The time per iteration of the Jacobi schemes are reported in the results. The
time per iteration reported are averaged over the number of processors and
averaged over few runs of the same con�guration.

Figure 8shows the performance of pure MPI and hybrid schemes for a 2500×2500
grid. The pure MPI scheme is faster than the hybrid scheme. The di�erence is
high for lesser number of processors and it reduces as the number of processors
increase. This may be due to the large grid size. There may be cache misses
when the grid size per processor is larger. In the hybrid scheme, each node
gets a bigger chunk of grid, which is solved with OpenMP threads, unlike pure
MPI where all the processors get a smaller chunk of grid. As the number of
processors increases, the grid size per node for hybrid scheme also decreases,
thereby making the code run faster and scale better. However, the speed never
matches that of the pure MPI schemes.

Figure 9shows the performance of pure MPI and hybrid schemes with in-
creasing grid size. The number of processors are kept constant at 20. As ex-
pected, each of the schemes take large time as the grid size increases due to
more computations. Even in this case, the pure MPI scheme work better than
hybrid scheme. As the size of the grid increases, the hybrid schemes perform
slower than pure MPI schemes, again probably due to cache misses, since each
node gets a much bigger chunk of the grid for computation.

Hybrid schemes dont always work better than pure MPI schemes, as we
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Figure 8: Performance comparison of pure MPI and hybrid implementations for
a �xed grid size of 2500× 2500

Figure 9: Performance comparison of pure MPI and hybrid implementations for
a �xed number of processors, p = 20
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observe. They depend on the nature of the computation. This fact is observed
by many hybrid programmers, and is not a surprising result. The possible
reasons for this are discussed in the conclusions.

7 Conclusions

Hybrid programming is compared to pure MPI program of a standard Laplace
solver. It is seen that hybrid program is slower compared to the pure MPI
program for di�erent grid sizes and di�erent number of processors.

Hybrid programming is an attempt to maximize the best from both OpenMP
and MPI paradigms. However, it does not always imply better performance.
This may be due to a number of reasons. OpenMP has less scalability due to
implicit parallelism while MPI allows multi-dimensional blocking. All threads
are idle except one while MPI communication. There is a thread creation over-
head. The chances of cache miss problems increase due to data placement
problem and larger dataset. Pure OpenMP performs slower than pure MPI
within a node due to lack of optimized OpenMP libraries. Hybrid programs
tend to work better when the communication to computation ratio is high. In
the Laplace problem considered in this project, there is communication only
at the boundary grid points of each processor and the cache miss during the
computation may be a overhead over this communication.

Converting pure MPI codes into Hybrid codes is not a particularly di�cult
task. It is worth a try because if the nature of the problem (computation and
communication) is such that it can allow for faster hybrid codes, the speedups
can be huge. There has been both positive and negative experiences with hybrid
codes and the programmer has to program and verify to decide to choose hybrid
programming over pure MPI. Currently, there are very few benchmarked results
for hybrid programs, and all of them are very problem speci�c.
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Appendix A - Pure MPI code 

 
/* PURE MPI LAPLACE SOLVER - SEE THE REPORT FOR EXACT PROBLEM 
DEFINITION*/ 
 
#include "mpi.h" 
#include <stdio.h> 
#include <math.h> 
#include <time.h> 
 
/* problem parameters*/ 
#define N 2500 // no of gridpoints .. Current code validated for square 
grid only.. Nx = Ny = N 
#define ITER 200 // total no of iterations to be performed 
 
 
#define MASTER 0 // id of the first processor 
 
/*define message tags for sending and receiving MPI calls*/ 
#define BEGIN 1 // message type 
#define DONE 2 // message type 
#define STH 3 // message type 
#define NTH 4 // message type 
 
/* define the number of threads to spawn */ 
 
int main(int argc,char *argv[]) 
{ 
  int myid, nprocs; 
  MPI_Status status; 
 
  int Nx = N; 
  int Ny = N; 
 
  /*functions*/ 
  void init();  //initializing the solution 
  void save();  //write the solution in a file 
  float errorcheck(); // check the error compared to analytical 
solution 
 
  float u[2][Ny][Nx]; //variable to solve 
 
  int min_rows, overflow; 
 
  int slave, south, north; //processor identity and its neighbours' 
identity 
  int num_rows; // num_rows for each processor 
  int destination, source; // for convenient msg passing 
  int msg; 
  int base; 
  int i,j,k; 
 
  int start, end;  //starting and ending j indices of each chunk of row 
for each processor - row wise domain distribution 
  float eps=0.1;   
 



  int count; 
 
  double start_time,end_time; 
 
 
  /*Initialize the MPI environment*/ 
  MPI_Init(&argc,&argv); 
 
  /*current id and total no of processes*/ 
  MPI_Comm_size(MPI_COMM_WORLD,&nprocs); 
  MPI_Comm_rank(MPI_COMM_WORLD,&myid); 
  start_time = MPI_Wtime(); 
 
  /*Master Task. Divides the data among processors and collects and 
collocates data back. No computation performed by master*/ 
  if(myid==MASTER) 
    { 
      printf("Gridsize Nx x Ny= %d x %d; \t ; \t Max Iterations= %d; 
\n",Nx, Ny, ITER); 
      printf("INitializing the solution \n"); 
      printf("\n"); 
      init(Nx, Ny, u); 
 
      /*only nprocs-1 processors are performing actual computation. 
Master is just co-ordinating*/ 
      min_rows = Ny/(nprocs-1); 
      overflow = Ny%(nprocs-1); 
      base=0; 
       
      for(i=1;i<=nprocs-1;i++) 
 { 
   if(i<=overflow) 
       num_rows=min_rows+1; 
   else 
       num_rows=min_rows; 
 
   /*processor 0 is our Master. Processors 1, 2, 3..... till 
nprocs-1 are the actual working processors*/ 
   if(i==1) 
     south=0; //no south neighbour for the first processor 
   else 
     south=i-1; 
   if(i==nprocs-1) 
     north=0; //no north neighbour for the last processor 
   else 
     north=i+1; 
 
   destination = i; 
   slave = i; 
   msg = BEGIN; 
 
   /* Send the required information to each node */ 
   MPI_Send(&slave, 1, MPI_INT, destination, msg, MPI_COMM_WORLD); 
   MPI_Send(&base, 1, MPI_INT, destination, msg, MPI_COMM_WORLD); 
   MPI_Send(&num_rows, 1, MPI_INT, destination, msg, 
MPI_COMM_WORLD); 
   MPI_Send(&south, 1, MPI_INT, destination, msg, MPI_COMM_WORLD); 



   MPI_Send(&north, 1, MPI_INT, destination, msg, MPI_COMM_WORLD); 
   MPI_Send(&u[0][base][0], num_rows*Nx, MPI_FLOAT, destination, 
msg, MPI_COMM_WORLD); 
 
   printf("Sent to= %d; \t j_index= %d; \t num_rows= %d; \t 
south_neighbour= %d; \t north_neighbour=%d\n", 
   destination,base,num_rows,south,north); 
 
   base += num_rows; 
 
 } 
       
      /* Collecting and collocating the results */ 
      for(i=1;i<=nprocs-1;i++) 
 { 
   source = i; 
   msg = DONE; 
   MPI_Recv(&base, 1, MPI_INT, source, msg, MPI_COMM_WORLD, 
&status); 
   MPI_Recv(&num_rows, 1, MPI_INT, source, msg, MPI_COMM_WORLD, 
&status); 
   MPI_Recv(&u[0][base][0], num_rows*Nx, MPI_FLOAT, source, msg, 
MPI_COMM_WORLD, &status); 
 } 
       
      /* WRITE FINAL SOULTION*/ 
      // save(Nx, Ny, &u[0][0][0], "output.dat"); 
 
 
    } 
/**************** End of master code *********************************/ 
   
 
 
/* Slaves code */ 
  if (myid != MASTER) 
    { 
 
      for(k=0;k<2;k++) 
 for (i=0; i<Nx; i++) 
   for (j=0; j<Ny; j++) 
     u[k][j][i] = 0.0;  
       
       
      /* Receive data from MASTER*/ 
       
      source = MASTER; 
      msg = BEGIN; 
      MPI_Recv(&slave, 1, MPI_INT, source, msg, MPI_COMM_WORLD, 
&status); 
      MPI_Recv(&base, 1, MPI_INT, source, msg, MPI_COMM_WORLD, 
&status); 
      MPI_Recv(&num_rows, 1, MPI_INT, source, msg, MPI_COMM_WORLD, 
&status); 
      MPI_Recv(&south, 1, MPI_INT, source, msg, MPI_COMM_WORLD, 
&status); 



      MPI_Recv(&north, 1, MPI_INT, source, msg, MPI_COMM_WORLD, 
&status); 
      MPI_Recv(&u[0][base][0], num_rows*Nx, MPI_FLOAT, source, msg, 
MPI_COMM_WORLD, &status); 
       
       
      for (i=0; i<Nx; i++) 
 u[1][0][i]=u[0][0][i]; 
       
      for (i=0; i<Nx; i++) 
 u[1][Ny-1][i]=u[0][Ny-1][i]; 
       
      for (j=0; j<Ny; j++) 
 u[1][j][0]=u[0][j][0]; 
       
      for (j=0; j<Ny; j++) 
 u[1][j][Nx-1]=u[0][j][Nx-1]; 
       
      if (base==0) 
 start=1; // do not include bottom row or row 0 which is the 
boundary  
      else 
 start=base; 
       
      if (base+num_rows==Ny) 
 end= base + num_rows-2;  //do not include top row which is also 
the boundary 
      else 
 end = base + num_rows-1; 
        
      k=0; 
       
      for(count=0; count<=ITER; count++) 
 { 
    
    
   if (south != 0) 
     { 
       MPI_Send(&u[k][base][0], Nx, MPI_FLOAT, south, NTH, 
MPI_COMM_WORLD); 
       MPI_Recv(&u[k][base-1][0], Nx, MPI_FLOAT, south, STH, 
MPI_COMM_WORLD, &status); 
     } 
   if (north != 0) 
     { 
       MPI_Send(&u[k][base+num_rows-1][0], Nx, MPI_FLOAT, north, 
STH, MPI_COMM_WORLD); 
       MPI_Recv(&u[k][base+num_rows][0], Nx, MPI_FLOAT, north, 
NTH, MPI_COMM_WORLD, &status); 
     } 
 
 
   for (j = start; j <= end; j++)    
     for (i = 1; i <= Nx-2; i++)   
       u[1-k][j][i] = (u[k][j][i+1]+u[k][j][i-
1]+u[k][j+1][i]+u[k][j-1][i])*0.25; 
    



   k = 1 - k; 
 } 
       
       
      eps=errorcheck(start, end, Nx, Ny, &u[k][0][0]);     
       
       
      /*Send data back to master*/ 
      destination=MASTER; 
      msg=DONE; 
      MPI_Send(&base, 1, MPI_INT, destination, msg, MPI_COMM_WORLD); 
      MPI_Send(&num_rows, 1, MPI_INT, destination, msg, 
MPI_COMM_WORLD); 
      MPI_Send(&u[k][base][0], num_rows*Nx, MPI_FLOAT, destination, 
msg, MPI_COMM_WORLD); 
       
       
       
      printf("Processor number: %d; eps = %6.12f \n", myid, eps); 
 
    } 
   
  end_time=MPI_Wtime();     
 
  printf ( "Processor number: %d; Total Elapsed time for pure MPI 
implementation is  %f  seconds\n", myid, end_time-start_time); 
   
   
  MPI_Finalize(); 
   
} 
 
 
/*Subroutines*/ 
 
void init(int nx, int ny, float *u)  
{ 
  int i,j; 
  double hx, hy; 
 
  hx=1.0/(nx-1); 
  hy=1.0/(ny-1); 
 
 
  for (j = 1; j <= ny-2; j++) 
    for (i = 1; i <= nx-2; i++) 
      *(u+j*nx+i) = (float)(0);  //all the interior points are set to 0 
 
  j=0; 
  for (i = 0; i <= nx-1; i++) 
    *(u+j*nx+i) = sin(3.14*i*hx);  //bottom boundary 
 
  j=ny-1; 
  for (i = 0; i <= nx-1; i++) 
    *(u+j*nx+i) = exp(-3.14)*sin(3.14*i*hx);  //top  boundary 
 
  i=0; 



  for (j = 0; j <= ny-1; j++) 
    *(u+j*nx+i) = (float)(0);  //left boundary 
 
  i=nx-1; 
  for (j = 0; j <= ny-1; j++) 
    *(u+j*nx+i) = (float)(0);  //right boundary 
 
} 
 
void save(int nx, int ny, float *u1, char *output)  
{ 
  int i, j; 
  FILE *f_out; 
 
 
  f_out = fopen(output, "w"); 
 
  for (i = nx-1; i >=0; i--) 
    for (j = 0; j <= ny-1; j++) 
      fprintf(f_out, "%d %d %6.12f\n", i, j, *(u1+j*nx+i)); 
  fclose(f_out); 
} 
 
float errorcheck(int start, int end, int nx, int ny, float *u) 
{ 
  int i,j; 
  float sum = 0.0; 
  float exact; 
 
  double hx, hy; 
   
  hx=1.0/(nx-1); 
  hy=1.0/(ny-1); 
   
  for (j = start; j <= end; j++) 
    { 
      for (i = 1; i <= nx-2; i++) 
 { 
   exact = (sin(3.14*i*hx))*exp(-3.14*j*hy); //exact solution at 
the point 
   sum = sum + (exact - *(u+j*nx+i))*(exact - *(u+j*nx+i)); 
//relative error 
 } 
    } 
   
  return sqrt(sum); 
} 
/*END OF PROGRAM*/ 
/**********************************************************************
******************************************/ 

 

 

 

 

 



Appendix B - Hybrid code 
 
/* HYBRID LAPLACE SOLVER - SEE THE REPORT FOR EXACT PROBLEM 
DEFINITION*/ 
 
#include "mpi.h" 
#include <stdio.h> 
#include <math.h> 
#include <time.h> 
#include <omp.h> 
 
/* problem parameters*/ 
#define N 2500 // no of gridpoints .. Current code validated for square 
grid only.. Nx = Ny = N 
#define ITER 200 // total no of iterations to be performed 
 
 
#define MASTER 0 // id of the first processor 
 
/*define message tags for sending and receiving MPI calls*/ 
#define BEGIN 1 // message type 
#define DONE 2 // message type 
#define STH 3 // message type 
#define NTH 4 // message type 
 
/* define the number of threads to spawn */ 
#define NUM_THREADS 4 
 
 
int main(int argc,char *argv[]) 
{ 
  int myid, nprocs; 
  MPI_Status status; 
 
  int Nx = N; 
  int Ny = N; 
 
  /*functions*/ 
  void init();  //initializing the solution 
  void save();  //write the solution in a file 
  float errorcheck(); // check the error compared to analytical 
solution 
 
  float u[2][Ny][Nx]; //variable to solve 
 
  int min_rows, overflow; 
 
  int slave, south, north; //processor identity and its neighbours' 
identity 
  int num_rows; // num_rows for each processor 
  int destination, source; // for convenient msg passing 
  int msg; 
  int base; 
  int i,j,k; 
 
  int start, end;  //starting and ending j indices of each chunk of row 
for each processor - row wise domain distribution 



  float eps=0.1;   
 
  int count; 
 
  double start_time,end_time; 
 
 
  /*Initialize the MPI environment*/ 
  MPI_Init(&argc,&argv); 
 
  /*current id and total no of processes*/ 
  MPI_Comm_size(MPI_COMM_WORLD,&nprocs); 
  MPI_Comm_rank(MPI_COMM_WORLD,&myid); 
  start_time = MPI_Wtime(); 
  omp_set_num_threads(NUM_THREADS); 
 
 
  /*Master Task. Divides the data among processors and collects and 
collocates data back. No computation performed by master*/ 
  if(myid==MASTER) 
    { 
      printf("Gridsize Nx x Ny= %d x %d; \t ; \t Max Iterations= %d; 
\n",Nx, Ny, ITER); 
      printf("INitializing the solution \n"); 
      printf("\n"); 
      init(Nx, Ny, u); 
 
      /*only nprocs-1 processors are performing actual computation. 
Master is just co-ordinating*/ 
      min_rows = Ny/(nprocs-1); 
      overflow = Ny%(nprocs-1); 
      base=0; 
 
      for(i=1;i<=nprocs-1;i++) 
 { 
   if(i<=overflow) 
       num_rows=min_rows+1; 
   else 
       num_rows=min_rows; 
 
   /*processor 0 is our Master. Processors 1, 2, 3..... till 
nprocs-1 are the actual working processors*/ 
   if(i==1) 
     south=0; //no south neighbour for the first processor 
   else 
     south=i-1; 
   if(i==nprocs-1) 
     north=0; //no north neighbour for the last processor 
   else 
     north=i+1; 
 
   destination = i; 
   slave = i; 
   msg = BEGIN; 
 
   /* Send the required information to each node */ 
   MPI_Send(&slave, 1, MPI_INT, destination, msg, MPI_COMM_WORLD); 



   MPI_Send(&base, 1, MPI_INT, destination, msg, MPI_COMM_WORLD); 
   MPI_Send(&num_rows, 1, MPI_INT, destination, msg, 
MPI_COMM_WORLD); 
   MPI_Send(&south, 1, MPI_INT, destination, msg, MPI_COMM_WORLD); 
   MPI_Send(&north, 1, MPI_INT, destination, msg, MPI_COMM_WORLD); 
   MPI_Send(&u[0][base][0], num_rows*Nx, MPI_FLOAT, destination, 
msg, MPI_COMM_WORLD); 
 
   printf("Sent to= %d; \t j_index= %d; \t num_rows= %d; \t 
south_neighbour= %d; \t north_neighbour=%d\n", 
   destination,base,num_rows,south,north); 
 
   base += num_rows; 
 
 } 
       
      /* Collecting and collocating the results */ 
      for(i=1;i<=nprocs-1;i++) 
 { 
   source = i; 
   msg = DONE; 
   MPI_Recv(&base, 1, MPI_INT, source, msg, MPI_COMM_WORLD, 
&status); 
   MPI_Recv(&num_rows, 1, MPI_INT, source, msg, MPI_COMM_WORLD, 
&status); 
   MPI_Recv(&u[0][base][0], num_rows*Nx, MPI_FLOAT, source, msg, 
MPI_COMM_WORLD, &status); 
 } 
       
      /* WRITE FINAL SOULTION*/ 
      //save(Nx, Ny, &u[0][0][0], "output.dat"); 
 
 
    } 
/**************** End of master code *********************************/ 
   
 
 
/* Slaves code */ 
  if (myid != MASTER) 
    { 
 
#pragma omp parallel private(i,j,k,count) 
      { 
 
#pragma omp for private(i,j,k) 
 for(k=0;k<2;k++) 
   for (i=0; i<Nx; i++) 
     for (j=0; j<Ny; j++) 
       u[k][j][i] = 0.0;  
  
 
 /* Receive data from MASTER*/ 
#pragma omp master 
 { 
   source = MASTER; 
   msg = BEGIN; 



   MPI_Recv(&slave, 1, MPI_INT, source, msg, MPI_COMM_WORLD, 
&status); 
   MPI_Recv(&base, 1, MPI_INT, source, msg, MPI_COMM_WORLD, 
&status); 
   MPI_Recv(&num_rows, 1, MPI_INT, source, msg, MPI_COMM_WORLD, 
&status); 
   MPI_Recv(&south, 1, MPI_INT, source, msg, MPI_COMM_WORLD, 
&status); 
   MPI_Recv(&north, 1, MPI_INT, source, msg, MPI_COMM_WORLD, 
&status); 
   MPI_Recv(&u[0][base][0], num_rows*Nx, MPI_FLOAT, source, msg, 
MPI_COMM_WORLD, &status); 
 } 
#pragma omp barrier 
  
#pragma omp sections 
 { 
    
#pragma omp section 
   { 
     for (i=0; i<Nx; i++) 
       u[1][0][i]=u[0][0][i]; 
   } 
    
#pragma omp section 
   { 
     for (i=0; i<Nx; i++) 
       u[1][Ny-1][i]=u[0][Ny-1][i]; 
   } 
 
    
#pragma omp section 
   { 
     for (j=0; j<Ny; j++) 
       u[1][j][0]=u[0][j][0]; 
   } 
    
#pragma omp section 
   { 
     for (j=0; j<Ny; j++) 
       u[1][j][Nx-1]=u[0][j][Nx-1]; 
   } 
 } 
  
 if (base==0) 
   start=1; // do not include bottom row or row 0 which is the 
boundary  
 else 
   start=base; 
  
 if (base+num_rows==Ny) 
   end= base + num_rows-2;  //do not include top row which is also 
the boundary 
 else 
   end = base + num_rows-1; 
  
  



 k=0; 
  
 for(count=0; count<=ITER; count++) 
   { 
      
#pragma omp master 
     { 
       if (south != 0) 
  { 
    MPI_Send(&u[k][base][0], Nx, MPI_FLOAT, south, NTH, 
MPI_COMM_WORLD); 
    MPI_Recv(&u[k][base-1][0], Nx, MPI_FLOAT, south, STH, 
MPI_COMM_WORLD, &status); 
  } 
       if (north != 0) 
  { 
    MPI_Send(&u[k][base+num_rows-1][0], Nx, MPI_FLOAT, north, 
STH, MPI_COMM_WORLD); 
    MPI_Recv(&u[k][base+num_rows][0], Nx, MPI_FLOAT, north, 
NTH, MPI_COMM_WORLD, &status); 
  } 
     } 
      
#pragma omp barrier 
      
      
#pragma omp for private(i,j) 
     for (j = start; j <= end; j++)    
       for (i = 1; i <= Nx-2; i++)   
  u[1-k][j][i] = (u[k][j][i+1]+u[k][j][i-
1]+u[k][j+1][i]+u[k][j-1][i])*0.25; 
      
     k = 1 - k; 
   } 
  
      } 
      eps=errorcheck(start, end, Nx, Ny, &u[k][0][0]);     
 
       
      /*Send data back to master*/ 
      destination=MASTER; 
      msg=DONE; 
      MPI_Send(&base, 1, MPI_INT, destination, msg, MPI_COMM_WORLD); 
      MPI_Send(&num_rows, 1, MPI_INT, destination, msg, 
MPI_COMM_WORLD); 
      MPI_Send(&u[k][base][0], num_rows*Nx, MPI_FLOAT, destination, 
msg, MPI_COMM_WORLD); 
       
       
       
      printf("Processor number: %d; eps = %6.12f \n", myid, eps); 
 
    } 
   
  end_time=MPI_Wtime();     
 



  printf ( "Processor number: %d; Total Elapsed time for Hybrid 
implementation is  %f  seconds\n", myid, end_time-start_time); 
   
   
  MPI_Finalize(); 
   
} 
 
 
/*Subroutines*/ 
 
void init(int nx, int ny, float *u)  
{ 
  int i,j; 
  double hx, hy; 
 
  hx=1.0/(nx-1); 
  hy=1.0/(ny-1); 
 
 
  for (j = 1; j <= ny-2; j++) 
    for (i = 1; i <= nx-2; i++) 
      *(u+j*nx+i) = (float)(0);  //all the interior points are set to 0 
 
  j=0; 
  for (i = 0; i <= nx-1; i++) 
    *(u+j*nx+i) = sin(3.14*i*hx);  //bottom boundary 
 
  j=ny-1; 
  for (i = 0; i <= nx-1; i++) 
    *(u+j*nx+i) = exp(-3.14)*sin(3.14*i*hx);  //top  boundary 
 
  i=0; 
  for (j = 0; j <= ny-1; j++) 
    *(u+j*nx+i) = (float)(0);  //left boundary 
 
  i=nx-1; 
  for (j = 0; j <= ny-1; j++) 
    *(u+j*nx+i) = (float)(0);  //right boundary 
 
} 
 
void save(int nx, int ny, float *u1, char *output)  
{ 
  int i, j; 
  FILE *f_out; 
 
 
  f_out = fopen(output, "w"); 
 
  for (i = nx-1; i >=0; i--) 
    for (j = 0; j <= ny-1; j++) 
      fprintf(f_out, "%d %d %6.12f\n", i, j, *(u1+j*nx+i)); 
  fclose(f_out); 
} 
 
float errorcheck(int start, int end, int nx, int ny, float *u) 



{ 
  int i,j; 
  float sum = 0.0; 
  float exact; 
 
  double hx, hy; 
 
  hx=1.0/(nx-1); 
  hy=1.0/(ny-1); 
 
#pragma omp parallel for private(i,j) reduction(+: sum) 
  for (j = start; j <= end; j++) 
    { 
      for (i = 1; i <= nx-2; i++) 
 { 
   exact = (sin(3.14*i*hx))*exp(-3.14*j*hy); //exact solution at 
the point 
   sum = sum + (exact - *(u+j*nx+i))*(exact - *(u+j*nx+i)); 
//relative error 
 } 
    } 
   
  return sqrt(sum); 
} 
/*END OF PROGRAM*/ 
/**********************************************************************
******************************************/ 
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