Seam Carving

Parallelizing a novel new image resizing algorithm

Jacob Stultz

Motivation

- Automated image resizing
 - Websites, other resizable Uis
- How to prevent:
 - Loss of important image information
 - Distortion

Existing Methods

Cropping

- Maintains aspect ratio
- Must find image focus
- Not always feasible

Existing Methods

- Image Scaling
 - Simple
 - Potential distortion
 - Only decent for scale factor of 0.5 to 2

New Approach

- Determine importance of image components
 - Remove least important columns/rows
 - Remove least important pixels per column/row
- Both methods are subject to distortion
- Pixel importance may vary within columns/rows

Better Approach

- Seam Carving
- Find and remove the least important seams, or paths across the image
- Compromise between previous two methods

Seam Carving

Seam Carving

- How to determine pixel importance?
 - "Energy" function
 - E(x,y) = |d/dx(x,y)| + |d/dy(x,y)|
 - Other functions possible
 - Find lowest energy path

- Calculate pixel energies
- Minimum path starting from each column or row
 - Dynamic Programming:

```
• M(x, y) = E(x, y) + min[M(x-1, y-1), M(x, y-1), M(x+1, y-1)]
```

- Remove lowest energy seam
- Repeat

Parallelization Opportunities

- Energy and Minpath:
 - Most computation/data intensive
- Energy:
 - Trivially parallelizable
 - Only fully executed once
- Minpath:
 - Somewhat harder to parallelize
 - Repeated many times

Parallelized Minpath, Take 2

Algorithm Analysis

- Energy Calculation
 - Serial time: O(width * height)
 - Parallel:
 - Time: O(width * height / P) (P = number of processors)
 - Communication: O(height * P) (Initially)

Algorithm Analysis

- MinPath Calculation
 - Serial time: O(width * height)
 - Parallel:
 - Time: O(width * height / P) (P = number of processors)
 - Communication: O(height * P) (Synchronized)

Energy

Minpath

Conclusions

- Easily parallelized
- Communication limited smaller image sizes
- Effectiveness of algorithm varies widely

Future Work

- Test with more processors
- Photoshop / The GIMP Integration

- More features to parallelize:
 - Feature removal
 - Multi-size images