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Part 1: Background on Granular Flow and 
the Spot Model 
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Microscopic Flow Mechanism of  Granular 
Materials 

Crystals 
Dense, ordered packing 

• Vacancy and Interstitial 
diffusion 
• Dislocations and defects 

Gas 
Dilute, random “packing” 

• Boltzman’s kinetic theory 
• random collisions 

Granular 
Dense, random packing 

• Long lasting many-body 
contacts 
• Lack of general microscopic 
model 
• How to describe cooperative 
random motion? 



4 

Spot Model 

  “Spot” Model for 
random packing 
dynamics  
(Bazant et al., 2001) 

  Developed for Silo 
Drainage 
  Spots - extended 

region of slightly 
enhanced interstitial 

  Spot move upwards 
from orifice, and also 
perform random walk 
at horizontal directions 

  When spots pass through 
particles, particles are 
displaced in the opposite 
direction 
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Velocity Correlation 

  Motivation for Spot Model: Local velocity 
correlation suggests correlated motion 

Experiments by MIT Dry Fluids Lab 
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Spot Model Microscopic Mechanism 

  Apply the spot displacement first to all particles within 
range 

  Particles are displaced in the opposite direction 
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Spot Model Microscopic Mechanism 

  Apply a relaxation step to all particles within a larger radius 
  All overlapping pairs of particles experience a normal 

repulsive displacement (soft-core elastic repulsion) 
  Very simple model - no “physical” parameters, only 

geometry. 



8 

Spot Model Microscopic Mechanism 

  Combined motion is bulk spot motion, while preserving 
packings 

  Not clear a priori if this will produce realistic flowing random 
packings 
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DEM Simulations 

  Discrete Element Method (DEM), 
codes developed by Sandia National 
Lab. 

  Each particle is accurately modeled 
according to Newton’s laws and a 
realistic friction model is employed to 
capture particle interactions  

  Parallel code on 24 processors 
  50d x 8d x 110d container 
  Drained from circular orifice 8d across 

L. E. Silbert et al., Phys Rev E, 64, 051302 (2001) 
J.W. Landry et al., Phys Rev E, 67, 041303 (2003) 
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Spot Simulations using C++ 

  Initial packing taken from DEM 
  Spots introduced at orifice 
  Spots move upwards and do random walk 

horizontally 
  Systematically calibrate three parameters 

from DEM: 
  Spot radius Rs (from velocity correlations) 
  Spot volume Vs (from particle diffusion) 
  Spot diffusion rate b (from velocity profile width) 
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Comparison with DEM simulation 
DEM 

Spot Model 

t = 1.05 s t = 2.10 s t = 3.15 s t = 4.20 s 
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Comparison with DEM simulation 

  DEM: 3-7 days on 24 processors 
  Spot Model Simulation: 8-12 hours on a 

single processor 
  A factor of ~102 speedup 

  Simulations run on AMCL 
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Part 2: Parallelizing the Spot Model 
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C++ codes 

  Split into regions,each 
storing particles within it 

class container { 
 void import(); 
 void put(int n, vec &v); 
 void dump(); 
 void regioncount(); 
 int count(vec &p, float r); 
 ... 
} 
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Important Routines 

  void spot(vec &p,vec &v, 
 float r); 
 p: position 
 v: displacement 
 r: spot radius 

  void relax(vec &p, float r,  float s, float 
force, float damp, int steps); 

 p: position 
 r: inner relaxation radius 
 s: outer relaxation 
 force: particle repulsive force 
 damp: particle velocity damping 
 steps: relaxation steps 

Spot Motion Relaxation 
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Possible for parallel computing 

  Serial: the elastic relaxation step is the computational 
bottleneck since it requires analyzing all pairs of 
neighboring particles within a small volume. 

  In a parallel version, ideally we can distribute this 
computational load across many processors. 

  Since each relaxation event occurs in a local area, we 
can pass out different relaxation jobs to different 
processors. 

  Serial code written in C++ ---> Use MPI for parallel 
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Master/Slave 

 entire state of the 
system (particle 
positions and spot 
positions) held on 
the master node 

 The master node 
sequentially 
passes out jobs to 
the slave nodes 
for computation 
and receive them 
back. 

Rycroft 2006 
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Master/Slave 

  Timing results: computed 60 frames of snapshots and 
calculated the average time per frame. 

  Run on AMCL 

# of slaves Time per frame (s) Speedup Efficiency 

(Serial) 
1 
3 
5 
7 

289 
241 
414 
512 
551 

1 
1.199 
0.698 
0.564 
0.524 

1 
59.96% 
17.45% 
9.41% 
6.56% 
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Master/Slave 

  Problems: 
  too much stress is placed on the master node 
  very poor scalability with the number of nodes, as 

the slaves often stand idle waiting for the master 
node to pass jobs to them 
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Distributed Algorithm 

  Container is divided up between the slaves, with each slave holding 
the particles in that section of the container. 

  A master node holds the position of the spots and computes their 
motion. When a spot moves, the master node tells the 
corresponding slave node to carry out a spot displacement of the 
particles within it. 

  Only the position and displacement carried by the spot need to be 
transmitted to the slave. 

  Drawback: 
  A spot’s region of influence may overlap with areas managed by 

other slaves. 
  Each slave must transmit particles to the slave carrying out the 

computation, and then receive back the displaced particles.  
(Communication between slaves is required)  
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Distributed Algorithm 
  Timing results:  (implemented and run on SiCortex) 

# of slaves Processor Grid Time per frame (s) Speedup Efficiency 

(Serial) 
2 
3 
4 
5 
6 
7 
8 
9 

10 

1x1x1 
1x1x2 
1x1x3 
1x1x4 
1x1x5 
1x1x6 
1x1x7 
1x1x8 
1x1x9 

1x1x10 

1256 
821 
674 
569 
515 
476 
446 
425 
406 
387 

1 
1.529 
1.864 
2.207 
2.439 
2.639 
2.816 
2.955 
3.094 
3.245 

1 
50.99% 
46.59% 
44.15% 
40.65% 
37.70% 
35.20% 
32.84% 
30.94% 
29.50% 



22 

Distributed Algorithm 

  Much better speedup compared with master/
slave method, but still not optimal 

  Bottleneck: Overlapping Spot Motion 
  One slave needs to transfer its particles to another 

slave, then wait for the computation and receives 
back particles that are in the region it controls 
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A Faster Distributed Algorithm 
  Motivation:  The elastic relaxation step can “magically” fix a lot of 

the unphysical packings, even if we do not apply relaxation 
every spot step. 
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A Faster Distributed Algorithm 
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A Faster Distributed Algorithm 

  For overlapping spot motion, both slaves 
responsible for the region of the spot 
influence carry out spot computation 
independently, and exchange particles that 
are out of range if necessary 

  May not be 100% accurate, but significantly 
reduce waiting time and size of messages 
being exchanged between slaves 
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A Faster Distributed Algorithm 
  Timing results:  (implemented and run on SiCortex) 

# of slaves Processor Grid Time per frame (s) Speedup Efficiency 

(Serial) 
2 
3 
4 
5 
6 
7 
8 
9 

10 

1x1x1 
1x1x2 
1x1x3 
1x1x4 
1x1x5 
1x1x6 
1x1x7 
1x1x8 
1x1x9 

1x1x10 

1256 
687 
458 
334 
254 
207 
176 
151 
132 
116 

1 
1.827 
2.745 
3.757 
4.950 
6.054 
7.134 
8.319 
9.502 
10.86 

1 
60.91% 
68.63% 
75.13% 
82.50% 
86.48% 
89.18% 
92.44% 
95.02% 
98.75% 
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A Faster Distributed Algorithm 

  Significant speedups and very good 
scalability with number of slaves 

  Problems with this approach occur near the 
boundaries of regions owned by each slave.  
Larger errors with increasing number of 
processors since the container is divided into 
more regions. 
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Conclusion 

  Master/slave method didn’t do so well 
  Distributed Algorithm gave satisfactory results 
  Significant speedup by Faster Distributed 

Algorithm, but balance between accuracy 
and speed 

  Possible future work considering other 
algorithms 


