
1

Parallelizing the Spot Model
for Dense Granular Flow

18.337 Parallel Computing
Yee Lok Wong May 8, 2008
Department of Mathematics, MIT

2

Part 1: Background on Granular Flow and
the Spot Model

3

Microscopic Flow Mechanism of Granular
Materials

Crystals
Dense, ordered packing

• Vacancy and Interstitial
diffusion
• Dislocations and defects

Gas
Dilute, random “packing”

• Boltzman’s kinetic theory
• random collisions

Granular
Dense, random packing

• Long lasting many-body
contacts
• Lack of general microscopic
model
• How to describe cooperative
random motion?

4

Spot Model

  “Spot” Model for
random packing
dynamics
(Bazant et al., 2001)

  Developed for Silo
Drainage
  Spots - extended

region of slightly
enhanced interstitial

  Spot move upwards
from orifice, and also
perform random walk
at horizontal directions

  When spots pass through
particles, particles are
displaced in the opposite
direction

5

Velocity Correlation

  Motivation for Spot Model: Local velocity
correlation suggests correlated motion

Experiments by MIT Dry Fluids Lab

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 2 4 6 8 10
C

o
rr

e
la

ti
o

n
 c

o
e

ff
ic

ie
n

t

Distance (r/d)

Hertzian
Hookean

Simulation

6

Spot Model Microscopic Mechanism

  Apply the spot displacement first to all particles within
range

  Particles are displaced in the opposite direction

7

Spot Model Microscopic Mechanism

  Apply a relaxation step to all particles within a larger radius
  All overlapping pairs of particles experience a normal

repulsive displacement (soft-core elastic repulsion)
  Very simple model - no “physical” parameters, only

geometry.

8

Spot Model Microscopic Mechanism

  Combined motion is bulk spot motion, while preserving
packings

  Not clear a priori if this will produce realistic flowing random
packings

9

DEM Simulations

  Discrete Element Method (DEM),
codes developed by Sandia National
Lab.

  Each particle is accurately modeled
according to Newton’s laws and a
realistic friction model is employed to
capture particle interactions

  Parallel code on 24 processors
  50d x 8d x 110d container
  Drained from circular orifice 8d across

L. E. Silbert et al., Phys Rev E, 64, 051302 (2001)
J.W. Landry et al., Phys Rev E, 67, 041303 (2003)

10

Spot Simulations using C++

  Initial packing taken from DEM
  Spots introduced at orifice
  Spots move upwards and do random walk

horizontally
  Systematically calibrate three parameters

from DEM:
  Spot radius Rs (from velocity correlations)
  Spot volume Vs (from particle diffusion)
  Spot diffusion rate b (from velocity profile width)

11

Comparison with DEM simulation
DEM

Spot Model

t = 1.05 s t = 2.10 s t = 3.15 s t = 4.20 s

12

Comparison with DEM simulation

  DEM: 3-7 days on 24 processors
  Spot Model Simulation: 8-12 hours on a

single processor
  A factor of ~102 speedup

  Simulations run on AMCL

13

Part 2: Parallelizing the Spot Model

14

C++ codes

  Split into regions,each
storing particles within it

class container {
 void import();
 void put(int n, vec &v);
 void dump();
 void regioncount();
 int count(vec &p, float r);
 ...
}

15

Important Routines

  void spot(vec &p,vec &v,
 float r);
 p: position
 v: displacement
 r: spot radius

  void relax(vec &p, float r, float s, float
force, float damp, int steps);

 p: position
 r: inner relaxation radius
 s: outer relaxation
 force: particle repulsive force
 damp: particle velocity damping
 steps: relaxation steps

Spot Motion Relaxation

16

Possible for parallel computing

  Serial: the elastic relaxation step is the computational
bottleneck since it requires analyzing all pairs of
neighboring particles within a small volume.

  In a parallel version, ideally we can distribute this
computational load across many processors.

  Since each relaxation event occurs in a local area, we
can pass out different relaxation jobs to different
processors.

  Serial code written in C++ ---> Use MPI for parallel

17

Master/Slave

 entire state of the
system (particle
positions and spot
positions) held on
the master node

 The master node
sequentially
passes out jobs to
the slave nodes
for computation
and receive them
back.

Rycroft 2006

18

Master/Slave

  Timing results: computed 60 frames of snapshots and
calculated the average time per frame.

  Run on AMCL

of slaves Time per frame (s) Speedup Efficiency

(Serial)
1
3
5
7

289
241
414
512
551

1
1.199
0.698
0.564
0.524

1
59.96%
17.45%
9.41%
6.56%

19

Master/Slave

  Problems:
  too much stress is placed on the master node
  very poor scalability with the number of nodes, as

the slaves often stand idle waiting for the master
node to pass jobs to them

20

Distributed Algorithm

  Container is divided up between the slaves, with each slave holding
the particles in that section of the container.

  A master node holds the position of the spots and computes their
motion. When a spot moves, the master node tells the
corresponding slave node to carry out a spot displacement of the
particles within it.

  Only the position and displacement carried by the spot need to be
transmitted to the slave.

  Drawback:
  A spot’s region of influence may overlap with areas managed by

other slaves.
  Each slave must transmit particles to the slave carrying out the

computation, and then receive back the displaced particles.
(Communication between slaves is required)

21

Distributed Algorithm
  Timing results: (implemented and run on SiCortex)

of slaves Processor Grid Time per frame (s) Speedup Efficiency

(Serial)
2
3
4
5
6
7
8
9

10

1x1x1
1x1x2
1x1x3
1x1x4
1x1x5
1x1x6
1x1x7
1x1x8
1x1x9

1x1x10

1256
821
674
569
515
476
446
425
406
387

1
1.529
1.864
2.207
2.439
2.639
2.816
2.955
3.094
3.245

1
50.99%
46.59%
44.15%
40.65%
37.70%
35.20%
32.84%
30.94%
29.50%

22

Distributed Algorithm

  Much better speedup compared with master/
slave method, but still not optimal

  Bottleneck: Overlapping Spot Motion
  One slave needs to transfer its particles to another

slave, then wait for the computation and receives
back particles that are in the region it controls

23

A Faster Distributed Algorithm
  Motivation: The elastic relaxation step can “magically” fix a lot of

the unphysical packings, even if we do not apply relaxation
every spot step.

24

A Faster Distributed Algorithm

25

A Faster Distributed Algorithm

  For overlapping spot motion, both slaves
responsible for the region of the spot
influence carry out spot computation
independently, and exchange particles that
are out of range if necessary

  May not be 100% accurate, but significantly
reduce waiting time and size of messages
being exchanged between slaves

26

A Faster Distributed Algorithm
  Timing results: (implemented and run on SiCortex)

of slaves Processor Grid Time per frame (s) Speedup Efficiency

(Serial)
2
3
4
5
6
7
8
9

10

1x1x1
1x1x2
1x1x3
1x1x4
1x1x5
1x1x6
1x1x7
1x1x8
1x1x9

1x1x10

1256
687
458
334
254
207
176
151
132
116

1
1.827
2.745
3.757
4.950
6.054
7.134
8.319
9.502
10.86

1
60.91%
68.63%
75.13%
82.50%
86.48%
89.18%
92.44%
95.02%
98.75%

27

A Faster Distributed Algorithm

  Significant speedups and very good
scalability with number of slaves

  Problems with this approach occur near the
boundaries of regions owned by each slave.
Larger errors with increasing number of
processors since the container is divided into
more regions.

28

Conclusion

  Master/slave method didn’t do so well
  Distributed Algorithm gave satisfactory results
  Significant speedup by Faster Distributed

Algorithm, but balance between accuracy
and speed

  Possible future work considering other
algorithms

