Jacob Stultz 5/16/2008
6.338/18.337 Final Project Report Prof Alan Edelman

Seam Carving:
Parallelizing a novel new image resizing algorithm

Introduction

Seam carving is a new method of automatically resizing images in a content aware
fashion. The idea is to scale images up or down, without necessarily maintaining the image
aspect ratio, while simultaneously attempting to minimize visually destructive image distortion
and removal of important image information. An algorithm is used to determine, based on a
specific per-pixel “importance” function, paths of pixels through the image which theoretically
contain the least relevant image information. This process is fairly computationally and data
intensive, so developing a scheme to operate on images in parallel could be valuable. The
majority of processors sold in commercially available computers currently have at least two
cores, with four and eight core processors on their way into prevalence as well. Therefore, a
parallelized implementation of the seam carving algorithm should be useful to the majority of
people doing seam carving on images.

Motivation

Displaying the layout of content content containing images often requires that the images
be resized, whether the aspect ratio is changed or not. This can be necessary in many different
areas, including multimedia websites, GUI computer applications, mobile applications on cell
phones and PDAs, and even in developing on-paper layouts for magazines or newspapers. The
layout often puts constraints on the dimensions of an image, and in some cases these constraints
can change dynamically in real time (if a user resizes his browser window while viewing a
website, for example).

It is desirable, in these cases, to maintain the overall coherency of the images contained in
the layout. To do so, a few things must be prevented as much as possible: loss of important image
information (people or objects in the image), and damaging distortion, via skewing, stretching,
shrinking, or otherwise. Therefore, an algorithm should be used that can resize images while
minimizing these potential negative effects.

Existing Methods

There are, of course, a number of existing methods for automatically resizing images,
some more trivial than others. I will discuss a few of these and how well they accomplish the
goals specified above.

One of the simplest and oldest image resizing methods available is cropping; removing
large blocks from the outside of an image. The primary advantages of cropping is that the actual
removal of information is trivial, and it is guaranteed to always maintain the aspect ratio of the
image and will not result in any distortion. However, it has two significant disadvantages,
particularly when automated. The first is that the important pixels in an image are not always in
the center; often they are nearer to the edges of an image and any algorithm must have some way
of reliably determining the primary subject(s) of the image so that they aren't removed. Secondly,
some images simply can't be feasibly cropped. Examine the image below:

The two foci are at the edge of the image; there is no way that the image can be cropped without
removing one of them, even if the cropping is done manually.

Another fairly trivial image resizing technique is scaling of the image. This, like cropping,
is extremely simple, albeit slightly more computationally intensive. It has the advantage that it
retains all components of the image, and can easily be done automatically, but if the aspect ratio
is changed, it inevitably causes damaging distortion, as shown below:

Even if the aspect ratio is not changed, growing or shrinking an image by a scale factor of more
than 2 can still result in significant image degradation.

New Approach

Since neither of the aforementioned techniques seem satisfactory, some new techniques
should be investigated that attempt to dynamically determine the importance of various areas or
pixels within the image, and not be restricted to only removing content around the edges.
Assuming a metric to determine relative importance, one might develop a scheme to remove
individual columns or rows of an image deemed to be the least important (instead of in large
contiguous blocks, ala cropping).

This is still not an ideal solution, however. Individual columns and rows may contain both
largely irrelevant pixels, as well as key components of the main image subject. Additionally, this
will likely still result in significant distortion: imagine a straight diagonal line across an image,
with columns or rows that cross it removed. The line would no longer be straight, which could be
a hugely negative effect, particularly in images with many geometric shapes.

Instead, suppose that importance was determined on a per-pixel basis, and then the least
important pixel in each column or row was removed; this solves the problem of columns or rows
containing pixels of widely varying importance; however, the scattered removal of pixels could
result in significant image distortion in the form of localized skewing.

Seam Carving

A sort of compromise between the two previous proposed methods is seam carving:
instead of removing the columns and rows of least importance, a more flexible method is used.
The least important contiguous paths from the top of the image to the bottom, or from the left
side of the image to the right side (depending on the direction of resizing) are removed instead.
In the case of a vertical path, or “seam”, it contains only one pixel per row (per column in the
horizontal case), and each pixel must be either directly or diagonally adjacent to the next. In this
way, an image can be shrunk with less skewing than removing any pixel per row or column,
while being able to maintain more relevant image information than simply removing entire rows
and columns. The least important vertical seam is shown in red in the sailing picture below:

To shrink the image, this one pixel wide seam is removed, and then the process is
repeated. Each iteration, the least important seam is found, and then removed, until enough seams
are removed such that the image is the desired size. Conversely, to grow an image, these seams
are found, but instead of removing them, new seams are added along side them with pixel values
created by averaging those around them. The results of this can be seen below, where the image
is shrunk horizontally by 180 pixels, and grown horizontally by 180 pixels. The first image shows
all of the seams calculated in the process.

In order to generate these seams, however, there must be a way of determining the
importance of each individual pixel. An “energy” function is used for this. There are a number of
different potential functions that can be used, but the function used here is a simple difference
function, where the importance of each pixel is determined by how much it differs from the
surrounding pixels:

E(x,y) = |d/dx(x,y)| + |d/dy(x,y)]

In practice, the average absolute difference of the pixel's color value from the four pixels
directly adjacent to it determines that pixels importance. If a pixel is surrounded by pixels that
are nearly the same color, it is likely not important, whereas higher contrast regions of an image
are likely to contain relevant subjects.

Once the energy value of every pixel in the image is determined, the lowest energy path
from one side of the image to the other must be found. A dynamic programming algorithm is
used to determine the minimum energy path ending at each pixel on the edge of the image. The
basic formula of the algorithm is:

M(x,y) = E(x,y) + min[M(x-1, y-1), M(x, y-1), M(x+1, y-1)]

Assume that the image is being resized horizontally, so we are looking to discover
minimum energy vertical seams to remove. The M (or minimum path) value for each pixel in the
top row is set equal to that pixels energy. Then, the algorithm iterates down each successive row,
determining each pixels minimum path value by adding it's own energy value to the minimum
value of the three pixels above it. Once the last row is reached, the minimum path value for each
pixel in that row represents the lowest energy required to reach that pixel from the top of the
image. The lowest value is chosen, and then the path of the seam is easily determined from
backtracking up the image and the minimum path values for the other pixels. The seam is found,
and then removed, and the process is repeated again, until the correct number of seams have been
removed. Part of this process is demonstrated graphically below, on a hypothetical 8x8 pixel
image. The light blue blocks have been calculated, and the block currently being calculated is
dark blue. The arrows represent which previously calculated values it compares and depends on.

.

Parallelization

I chose to concentrate on parallelizing the energy and minimum path calculations, as they
are the most computation and data intensive aspects of the algorithm. The determination of the
lowest energy seam from the minimum path map and the removal of the pixels are both relatively
straightforward and fast.

The energy map calculation is trivially parallelizable. If the image data is split across
processors in large columns, the individual processors can calculate the energy of each pixel
completely independently of the others. Only one bit of communication must be done at the
beginning: each processor must have the two columns of pixels immediately adjacent to its block
of columns. This can be done all at once at the initiation of the calculation. An important note to
make about the energy map calculation, however, is that it only occurs once, at the start of the
resize. After each seam is removed, the only pixels for which the energy must be recalculated are
those directly or diagonally adjacent to the seam.

The minimum path calculation is slightly more complicated, since each processor must
depend on some of the calculations done by those working on columns adjacent to its data set.
Additionally, this calculation is done many times; each time a seam is removed, most of the
minimum path map must be recalculated. The specific implementation of the parallel algorithm
is outlined below, with diagrams representing a 16x16 pixel image. Red vertical lines delineate
between processors, and red arrows indicate where information must be sent from one processor
to another via MPI_Bsend (buffered send) and MPI_Recv (receive) calls.

Each processor begins to calculate minimum path values in parallel; for the first

[]

ooogn
Oooogoo
oo oooa|
ooogn

ooooon
Ooooood
ooooon
ooooon

calculations, and any later pixels which are on the edge of a processor's data set, a message must
be sent from the adjacent processor with the minimum path value of the diagonal pixel. This
proceeds across the row of pixels like so:

= =
H) _(EiN] |=) (min
HINININ) (NI
HINININ) (NI
HINININ) (NI
HINININ) (NI
HINININ) |miEinln
HINININ) NN
HINININ) |EIEE.
HINININ) (NI
HINININ) (NI
HINININ) |miEinln
HINININ) |miEinln
HINININ) |miEinln
HINININ) (NI
HINININ) (NI

) sl

HimInn
HimInn
HimInn
HimInn
NN
HimInn
NN
HimInn
HimInn
NN
NN
NN
HimInn
HimInn

) olE

oot
oot
oot
oot
Doon
oot
Doon
oot
oot
Doon
Doon
Doon
oot
oot

B B B
= H] |im) (] (NI
NN [HIEIEIN) (e
NN
NN
NN
NI
NN
NN
NN
NN
NI
NN
NN
NN
NN

=

H) NN (W

On the last pixel per row, the same MPI message send occurs, in the other direction.

OEOO

uln OOOO|

=

[]
[
[]
[]
&
[]
[]
[]

[]
[
[]
[]
[]
[]
[]
[]

o000 o EE
OO0 mE
oo goem
ooogoogoogo s
Oooogoogon
oodoogooon
oo on
oodoogooon
oodoogooon
Ooodoogoogo
Ooodoogoogo
Ooodoogoogo
Ooodoogoogo

[

[]

[]

[]
Oooogoogon
Oooogoogon
Oooogoogon
oot
oot
Oooogoogon
Oooogoogon

This row by row procedure is continually repeated, until the entire minimum path map has
been created. However, there is a potential message passing bottleneck. As highlighted in the
image on the right, at the start of the next row, the calculation of the leftmost pixel in the new
row depends on the result of the right most pixel in the previous row on the processor adjacent to
the left. The processors are not guaranteed to be completely synchronized, however, so it is
possible that one processor may be attempting to calculate the value of the pixel on the new row
before the processor it is waiting for has finished the calculations on the previous row. Instead,
once a processor starts working on a new row, it should calculate the minimum path value for the
pixels on both ends of the row and perform a buffered send of both values, so that when the other
processor needs that value, it is more likely to be available right away.

DDDDDDDDDDDDDDE%

OO 0d0o0odo ot
Jooodoooogoot]
OO 0d0o0odo ot

Algorithm Analysis

Energy Map Calculations

As previously explained, the energy map calculation is trivially parallelizable. For a serial
implementation, the computation time should be O(width * height), as it depends entirely on the
number of pixels in the image, and should be constant time per pixel. For the parallel
implementation, each processor should be able to complete its calculations in the same amount of
time for the number of pixels it has to process, so the computation time should be O(width *
height / P).

The communication required for the parallelized energy calculation is small. As
mentioned before, each processor needs the single columns of pixels adjacent to its set of
columns. There should be on the order of P such columns, so the total communication required is
O(height * P), and this communication can be done all at once before the calculations begin, so it
should be fast and efficient, minimally impacting performance.

Based on the above analysis, an approximate 2x speedup should be expected for the
parallel implementation on a 2 CPU system.

Minimum Path Map Calculations

The minimum path map calculation is also constant time per pixel, so the overall
computation time for the serial implementation should be O(width * height). The same again, is
true of the parallel implementation: each processor is operating on 1/P of the total pixels, so the
expected computation time should be O(width * height / P).

The primary difference here is in the communication. The total data to be communicated
is O(height * P) again, but it cannot all be sent at once; the processors must stay somewhat
synchronized, as they are depending on each other for data to complete their calculations. If the
processors progress at different rates, some may be stalled waiting to receive messages, and so
some overhead should be expected due to communication. This overhead should be lower with
larger images, but higher with more processors, as it is essentially a function of pixels per row
per processor.

The expected speedup, therefore, for the minimum path calculation, is less than 2x, but
approaching that as the size of the image increases.

Results

Time in ms

Time in ms

1800

1600

1400

1200

1000

800

400

200

900

800

700

600

500

400

300

200

100

I
0.6 MP

0.6 MP

Energy

2.5MP

Image size

Minimum Path

2.5 MP
Image size

10 MP

10 MP

40 MP

40 MP

B Serial
B Parallel

M Serial
B Parallel

Results Analysis

The results are mostly as expected; the energy map calculation scaled nearly perfectly with the
increased number of processors, and the minimum path calculations were barely sped up for
smaller images, but approached the expected limit of 2x speedup for larger images.

Conclusion

The core components of the seam carving algorithm were relatively easily parallelized, and
provided fairly significant improvements in computation time. As expected, communication
bottlenecks limited the performance of the algorithm on smaller image sizes, but as digital
cameras and scanners are released with increasingly high resolutions, and storage media
continues to grow in size, there should be a trend towards larger and larger images which will
make this parallel algorithm more relevant.

A final note to make regarding the minimum path algorithm is that it is not strictly necessary to
recompute values for the entire image every time a seam is removed; rather, pixels that are above
the downward diagonals from all pixels in the seam will not be affected by the removal of a seam.
However, in images that are relatively square, at best these pixels will make up approximately
half of the image, so for larger images being processed on more than two processors, the naive
recalculation of the entire map, in parallel, should still prove faster than determining which pixels
require recalculation and only processing those.

Future Work

Due to hardware limitations, I was unable to the algorithm on more than two processors; the
larger machines available to me did not have the necessary image processing libraries available
(pngwriter and libpng, specifically). In the future, it would be useful to test the algorithm on
larger machines to verify how well it scales on systems with many more than 2 CPUs.

Additionally, it would be very useful to integrate the parallel algorithm in a plug-in for common
image manipulation software such as Photoshop or The GIMP. I had intended to integrate my
changes to the algorithm into a GIMP plug-in, but was unable to resolve conflicts between GIMP
and the MPI libraries.

Finally, there are a few other features outlined in the original seam carving paper. The ability to
remove particular features of an image, and pre-calculation of many different images sizes so that
an image can be dynamically resized with minimal computation in more lightweight
environments, such as a web browser or mobile phone. These would both have been very
interesting to parallelize.

References

Avidan, S. and Shamir, A. 2007. Seam carving for content-aware image resizing. ACM Trans.
Graph. 26, 3 (Jul. 2007), 10.

Code for PNG reading (rgb_buffer_from_image) copied from liblqr (Liquid Rescale Library), an
open source seam carving library. http://liblgr.wikidot.com/

http://liblqr.wikidot.com/

Appendix A: Serial Code

#include <pngwriter.h>
#include <assert.h>
#include <time.h>

using namespace std;
char *infile = NULL;

double min (double a, double b) {
return a<b?a:b;

}

double min (double a, double b, double c) {
return min (a,min (b, c));

}

double
compute_e (unsigned char * buf, int x, int y, int w, int h)
{

double gx, gy;

if (y == 0)
{
gy = fabs(buf[((y+1)*w+x)*3] - buf[(y*w+x)*3]) +
fabs (buf[((y+1) *w+x) *3+1] — buf[(y*w+x)*3+1]) +
fabs (buf [((y+1) *w+tx) *3+2] — buf[(y*w+x) *3+2]);

}
else if (y < h - 1)
{

gy = (fabs(buf[((y+1l)*w+x)*3] — buf[((y-1)*w+x)*3]) +
fabs (buf [((y+1) *w+x) *3+1] — buf[((y-1)*w+x)*3+1]) +
fabs (buf [((y+1) *w+x) *3+2] - buf[((y-1)*w+x)*3+2]1))/2;

}
else
{

gy = fabs(buf[(y*w+x)*3] — buf[((y-1)*w+x)*3]) +
fabs (buf [(y*w+x) *3+1] — buf[((y—-1)*w+x)*3+1]) +
fabs (buf [(y*w+x) *3+2] — buf[((y-1)*w+x)*3+2]);

}
if (x == 0)
{

gx = fabs(buf[(y*w+x+1l)*3] — buf[(y*w+x)*3]) +

fabs (buf [(y*w+x+1) *3+1] - buf[(y*w+x)*3+1]) +

fabs (buf [(y*w+x+1) *3+2] — buf[(y*w+x)*3+2]);

}

else if (x < w — 1)
{
gx = (fabs(buf[(y*w+x+1)*3] - buf[(y*w+x-1)*3]) +
fabs (buf [(y*w+x+1) *3+1] - buf[(y*w+x-1)*3+1]) +
fabs (buf [(y*w+x+1) *3+2] - buf[(y*w+x-1)*34+2]))/2;

else
gx = fabs(buf[(y*w+x)*3] - buf[(y*w+x-1)*3]) +
fabs (buf [(y*w+x) *3+1] - buf[(y*w+x—-1)*3+1]) +

fabs (buf [(y*w+x) *34+2] — buf[(y*w+x—-1)*3+2])/2;

}
return (gx + gy)/2;

/*** MAIN ***/
int

main (int argc, char **argv)

{
clock_t start, load, en, minpath;
char * infile = argv[1l];
// open input files
pngwriter png(1,1,0,"");

png.readfromfile (infile);

int w = png.getwidth ();
int h = png.getheight ();

/* convert the image into rgb buffers */
unsigned char *rgb_buffer;

start = clock();
rgb_buffer = rgb_buffer from image (&png);

load = clock();

// generate energy map
double * energy = (double *)malloc(sizeof (double) * w * h);

y < h; y++) |
0; x < w; x++) {

for (int y = 0
for (int x

” ~e

energy[y*w+x] = compute_e (rgb_buffer, x, y, w, h);

}

en = clock();
// generate seams
double * map = (double *)malloc (sizeof (double) * w * h);
// generate first row
for (int x = 0; x < w; x++) {
map [x] = energy[x];

}

//iteratively find each successive lowest energy path per row
for (int y = 1; yv < h; y++) {
for (int x = 0; x < w; x++) {
if (x == 0) |
map[y*w+x] = energy[y*w+x] + min(map[(y—-1) *w+x],
map [(y=1) *w+x+1]);
}
else if (x == w - 1) {
map[y*w+x] = energy[y*w+x] + min(map[(y—-1)*w+x-17,
map [(y—1) *w+x]);
}
else {
map [y*w+x] = energy[y*w+x] + min(map[(y—-1)*w+x-17,
map [(y-1) *w+x], mapl[(y-1)*w+x+1]);
}

}
}

minpath = clock();

printf ("loading: %f\n", (double) (load-start)/CLOCKS_PER_SEC);
printf ("energy: %f\n", (double) (en-load)/CLOCKS_PER_SEC);
printf ("minpath: $f\n", (double) (minpath-en) /CLOCKS_PER_SEC);

return O;

}

/* convert the image in the right format */
unsigned char *
rgb_buffer_from_image (pngwriter * png)
{
int x, y, k, bpp;
int w, hj;
unsigned char *buffer;

/* get info from the image */
w = png->getwidth ();

h = png->getheight ();
bpp = 3; // we assume an RGB image here

/* allocate memory to store w * h * bpp unsigned chars */
//buffer = g_try_new (unsigned char, bpp * w * h);

buffer = (unsigned char *)malloc(bpp * w * h);

assert (buffer != NULL);

/* start iteration (always y first, then x, then colours) */
for (y = 0; yv < h; y++)
{
for (x = 0; x < w; x++)
{
for (k = 0; k < bpp; k++)
{
/* read the image channel k at position x,y */
buffer[(y * w + x) * bpp + k] =
(unsigned char) (png->dread (x + 1, yv + 1, k +
1) * 255);
/* note : the x+1,y+1,k+1 on the right side are
* specific the pngwriter library */

}

return buffer;

Appendix B: Parallelized Code

#include
#include
#include
#include

<pngwriter.h>
<assert.h>
<time.h>
<mpi.h>

using namespace std;

char *infile = NULL;

double min (double a, double b) {
return a<bla:b;

}

double min (double a, double b, double c) {
return min(a,min (b, c));

}

double

compute_e

{

(unsigned char * buf, int x, int y, int w, int h)

double gx, gy;

if (y == 0)
{
gy = fabs(buf[((y+1)*w+x)*3] - buf[(y*w+x)*3]) +
fabs (buf[((y+1) *w+x) *3+1] — buf[(y*w+x)*3+1]) +
fabs (buf[((y+1) *w+x) *3+2] — buf[(y*w+x) *3+2]);
}
else if (y < h - 1)
{
gy = (fabs(buf[((y+1)*w+x)*3] — buf[((y-1)*w+x)*3]) +
fabs (buf [((y+1) *w+x) *3+1] — buf[((y—-1)*w+x)*3+1]) +
fabs (buf[((y+1) *w+x) *34+42] — buf[((y-1)*w+x)*3+2]))/2;
}
else
{
gy = fabs(buf[(y*w+x)*3] — buf[((y-1)*w+x)*3]) +
fabs (buf [(y*w+x) *3+1] — buf[((y—-1)*w+x)*3+1]) +
fabs (buf[(y*w+x) *3+2] — buf[((y—-1)*w+x)*3+2]);
}
if (x == 0)

= fabs (buf[(y*w+x+1)*3] - buf[(y*w+x)*3]) +

fabs (buf[(y*w+x+1) *3+1] - buf[(y*w+x)*3+1]) +

fabs (buf [(y*w+x+1) *3+2] - buf[(y*w+x)*3+2]);
}
else if (x < w — 1)
{
gx = (fabs(buf[(y*wtx+1l)*3] - buf[(y*w+x-1)*3]) +
fabs (buf [(y*w+x+1) *3+1] - buf[(y*w+x-1)*3+1]) +
fabs (buf [(y*w+x+1) *3+2] - buf[(y*w+x-1)*34+2]))/2;
}
else
{
gx = fabs(buf[(y*w+x)*3] - buf[(y*w+tx-1)*3]) +
fabs (buf [(y*w+x) *3+1] — buf[(y*w+x—-1)*3+1]) +
fabs (buf [(y*w+x) *3+2] - buf[(y*w+x—-1)*3+2])/2;

}
return (gx + gy)/2;

/*** MAIN ***/

int
main (int argc, char **argv)
{

clock_t begin, load, en, minpath;
char * infile = argv[1l];

// open input file
pngwriter png(1,1,0,"");
png.readfromfile (infile);

int w = png.getwidth ();
int h = png.getheight ();

/* convert the image into rgb buffer */
unsigned char *rgb_buffer;

int rank, n;

MPI_ Init (NULL, NULL);

MPI_Comm_rank (MPI_COMM_WORLD, &rank);
MPI_Comm_size (MPI_COMM_WORLD, &n);

MPI_Status status;
begin = clock();
rgb_buffer = rgb_buffer from image (&png);

load = clock();

// generate energy map
double * energy = (double *)malloc(sizeof (double) * w * h);

for (int y = 0; yv < h; y++) {

for (int x = rank*w/n; x < (rank+l)*w/n; x++) {
energy[y*w+tx] = compute_e (rgb_buffer, x, y, w, h);
}
}
en = clock ();
// generate seams
double * map = (double *)malloc(sizeof (double) * w * h);

// generate first row, calculating ends of segment and
sending first

int start = rank*w/n;

int end = (rank+l)*w/n-1;
map[start] = energy[start];
map [end] = energylend];

if (rank > 0) {
MPI_Bsend(&map[start], 1, MPI_DOUBLE, rank-1, O,
MPI_COMM_WORLD) ;
}
if (rank < n - 1) {
MPI_Bsend (&map[end], 1, MPI_DOUBLE, rank+1l, O,
MPI_COMM_WORLD) ;
}

for (int x = start + 1; x < end; x++) {
map [x] = energy[x];

}

double left, right;
//iteratively find each successive lowest energy path per row
for (int v = 1; y < h; y++) {
if (rank > 0) {
MPI_Recv (&left, 1, MPI_DOUBLE, rank-1, O,
MPI_COMM_WORLD, &status);
}
if (rank < n-1) {
MPI_Recv (&right, 1, MPI_DOUBLE, rank+1, O,
MPI_COMM_WORLD, é&status);
}

if (rank == 0) {
map[y*w] = energyl[y*w] + min(mapl[(y-1)*w],
map [(y—1)*w+1l]);
map [y*w+tend] = energy|[y*wtend] + min(mapl[(y—-1)*w+end-1],

map [(y-1) *w+tend],

right);
if (y <h - 1)
MPI_Bsend(&map|[y*w+end], 1, MPI_DOUBLE, rank+1l, O,
MPI_COMM_WORLD) ;
}

else if (rank == n-1) {
map [y*w+end] = energyl[y*wtend] + min(map[(y-1)*w+tend],
map[(y—1) *w+tend-11]) ;
map [y*w+start] = energyl[y*w+start] + min(left,

map[(y-1) *w+start],
map|[(y—-1) *wt+start+
11);
if (y < h - 1)
MPI_Bsend (&map[y*w+start], 1, MPI_DOUBLE, rank-1, O,
MPI_COMM_WORLD) ;
}

else {

map [y*w+start] = energyly*w+start] + min(left,
map[(y—-1) *wt+start],
map[(y—1) *wt+start+

11);

map [y*w+tend] = energy[y*wtend] + min(mapl[(y—-1)*w+end-1],
map [(y—-1) *w+end],
right);

if (y < h - 1) {
MPI_Bsend(&map|[y*w+end], 1, MPI_DOUBLE, rank+1l, O,
MPI_COMM_WORLD) ;
MPI_Bsend (&map|[y*w+start], 1, MPI_DOUBLE, rank-1, O,
MPI_COMM_WORLD) ;
}
}

for (int x = start+l; x < end-1; x++) {
map [y*w+x] = energy[y*w+x] + min(mapl[(y—-1)*w+x-1],
map [(y-1) *w+x], map[(y-1)*w+x+1]);
}
}

minpath = clock();

printf ("loading: %f\n", (double) (load-begin)/CLOCKS_PER_SEC) ;
printf ("energy: %f\n", (double) (en-load)/CLOCKS_PER_SEC) ;
printf ("minpath: %f\n", (double) (minpath-en)/CLOCKS_PER_SEC) ;
MPI_Finalize();

return O;

/* convert the image in the right format */
unsigned char *
rgb_buffer_ from image (pngwriter * png)

{

1)

int x, y, k, bpp;
int w, h;j;
unsigned char *buffer;

/* get info from the image */

w = png->getwidth ();

h = png—->getheight ();

bpp = 3; // we assume an RGB image here

/* allocate memory to store w * h * bpp unsigned chars */
//buffer = g_try_new (unsigned char, bpp * w * h);

buffer = (unsigned char *)malloc(bpp * w * h);

assert (buffer != NULL);

/* start iteration (always y first, then x, then colours) */
for (y = 0; y < h; y++)
{
for (x = 0; x < w; x++)
{
for (k = 0; k < bpp; k++)
{
/* read the image channel k at position x,y */
buffer[(y * w + x) * bpp + k] =
(unsigned char) (png->dread (x + 1, y + 1, k +
* 255);
/* note : the x+1,y+1,k+1 on the right side are
* specific the pngwriter library */

}

return buffer;

