
18.337 PARALLEL COMPUTING

A Parallel, Finite-Difference Time Domain Maxwell Propagator :
A Star-P Implementation

Alejandro W. Rodriguez

In this manuscript, we discuss the development of a parallel Maxwell solver in the time domain.
In particular, Maxwell’s equations are discretized in a uniform Yee grid using a finite-difference
time-domain discretization approach. The resulting discretized equations are then parallelized in
Star-P, by partitioning the evolution matrices in space. A data-parallel, hybridization approach
is discussed in the context of this problem, and these parallel results are benchmarked for speed
and performance against serial versions of the same code. Finally, the method is checked against
standard results in the literature.

I. INTRODUCTION

Many scientific collaborations require large numbers
of computers to run in parallel. In fact, to a large ex-
tent, the future of many of the interdisciplinary topics
of current interest rests entirely on the available super-
computing power. In this paper, we implement a two
dimensional parallel finite-difference time-domain elec-
tromagnetic solver and benchmark it against it’s serial
counterpart. In particular, we demonstrate some of the
advantages of this parallelized solution by applying it to
the study of new interesting and computationally expen-
sive systems.

The basis for solving scientific problems numerically in-
volves discretizing a given equation of motion and solving
and/or iterating the resulting matrix equation. While
this is generally a feasible approach to solving simple
one-dimensional problems, it becomes prohibitive once
extended to higher dimensions, or when a high degree of
precision is critical to the accuracy of the results. This
is particularly true of problems in electromangnetism.
Previous approaches to predicting electromagnetic phe-
nomena involved a combination of analytical (perturba-
tive) and numerical methods. The idea then was to ap-
proximate the exact equations of motion via a suitable
perturbative method, and then to iterate through the
subsequent (serial) approximations until one reached the
desired degree of accuracy. There are, however, whole
classes of problems in electromagnetism to which these
semi-analytic methods cannot be applied, and it is pre-
cisely these kinds of problems that supercomputers are
posed to solve.

To date, there are many pre-existing parallel electro-
magnetic solvers with substantially more flexibility than
what has been produced here. Nevertheless, the practice
acquired in developing a parallel code is of great learn-
ing value to an amateur like me, and will undoubtedly
allow me to play a larger, more direct, and independent
role in this field. In the future, the skills I have learned
in this class will be applied to the study of higher di-
mensionsional electromagnetism, to problems involving
imaginary-time evolution, higher-dimensional quasicrys-
talline structures and finally, thermal effects. It is ex-
pected that the additional degrees of freedom will dra-

matically increase the computational complexity, open-
ing up the possibility for increased supercomputing hack-
ery.

This paper is organized into three different sections:
Section II describes the theoretical and numerical basis
of the code, including analyses of the efficiency and conve-
nience of parallelizing the equations, with benchmarks as
a function of resolution and number of processors. These
are in turn followed by Sec. III with some results and
final remarks.

II. THEORY AND NUMERICS

The following subsections develop the theoretical basis
underlying our parallel code, and explain the discretiza-
tion, and parallelization schemes employed. Because the
parallelization procedure that one one can choose to ap-
ply to this problem is not unique, alternative frameworks
are discussed (and when possible, analyzed) as well. Sec-
tion II A is a brief description of the equations to be dis-
cretized, along with the quantities of interest to us. The
discretization procedures and complications thereof are
subsequently discussed in Sec. II B.

A. Continuum limit

We begin by writing down Maxwell’s equation in the
continuum limit. Assuming units of c = 1 and neglecting
factors of 4π, the most general form of Maxwell’s equa-
tions will yield:

∇×E(x, t) = −∂B(x, t)
∂t

(1)

∇×H(x, t) =
∂D(x, t)

∂t
+ J(x, t), (2)

where D = ε0E+P and H = µ−1
0 B−M describe the in-

teraction of the waves with charged matter, mediated via
the polarization P and magnetization M fields (e.g. in
non-magnetic, linear, homogenous media, they are given
by D = εE and B = µH, respectively). Here, D and
B are subject to constraints of the form: ∇ · D = ρf

18.337 PARALLEL COMPUTING

and ∇ · B = 0. (Note: Because any D and H satisfy-
ing the last two equations automatically satisfy the local
longitudial constraints, one needn’t worry about enforc-
ing the divergenceless condition—these are simple state-
ments about charge continuity and can be easily derived
from the curl equations above).

In principle, the solution of the above coupled partial
differential equations yields all the necessary information
to describe light and it’s interaction with matter. Our
goal is to numerically predict the space-time evolution
of the fields, and related expressions thereof: these will
mainly focus in the visualization of steady-state field pro-
files arising from time-dependent sources.

B. Discretized equations

The discretization of the above equations is given by
Ref. ? in thorough detail for the case where P and
M are both linear in the fields, and follows a leap-frog
approach in time (with center-difference and yee-grid dis-
cretizations for the fields—see Fig. 1). By discretization,
we simply mean that the continuous degrees of freedom
associated with time and space are quantized, e.g. in one
dimension, dx → ∆x, and dt → ∆t. In general, before
performing any numerical calculations, one must check
that the discretized equations satisfy a number of numer-
ical criteria for stability and convergence. An analysis of
the convergence as a function of resolution is also re-
quired. In the case of Maxwell’s equations, one can show
that, in most standard media, the discretized Maxwell
equations are both numerically stable and convergent as
a function of resolution, with the possibility of quadratic
accuracy for continuous ε. In order to ensure stability
however, a courant condition must be enforced (in one
dimension, one requires that ∆x/∆c < 1).

As turns out, in one and two dimensions, the vectorial
equations can be decomposed into solutions with strictly
transverse electric (TE, E · ẑ = 0) and magnetic (TM,
B · ẑ = 0) fields [ref]. In the TM case (Ez, Bx, By 6= 0),
the discretized equations take the form:

B
n+1/2
y,(i,j) −B

n−1/2
y,(i,j)

∆t
=

En
z,(i+1/2,j) − En

z,(i−1/2,j)

−∆x
(3)

B
n+1/2
x,(i,j) −B

n−1/2
x,(i,j)

∆t
=

En
z,(i,j+1/2) − En

z,(i,j−1/2)

−∆y
(4)

Dn+1
z,(i+1/2,j+1/2) −Dn

z,(i+1/2,j+1/2)

∆t
= −Jn

i+1/2,j+1/2

+
H

n+1/2
y,(i+1,j) −H

n+1/2
y,(i,j)

∆x
+

H
n+1/2
x,(i,j+1) −H

n+1/2
x,(i,j−1)

∆y
(5)

Dn+1
z,(i+1/2,j+1/2) = ε0E

n+1
z,(i+1/2,j+1/2)

+ Pn+1
z,(i+1/2,j+1/2) (6)

x

y

(i,j)

B x
n

(i,j+1/2)

E z
n

(i,j)

B x
n

(i,j-1/2)

B y
n

(i+1/2,j)

B y
n

(i-1/2,j)

FIG. 1: Schematic illustration of computational cell. The x
and y directions are denoted by the integer (i, j) labels, and
the fields at each grid point are denoted accordingly. Inset:
Illustration of the Yee grid as applied to the electric E and
magnetic B fields.

B
n+1/2
||,(i,j) = µ0H

n+1/2
||,(i,j) + M

n+1/2
||,(i,j) (7)

where we have yet to explicitly write the dependence of
P and M on the fields. The Yee lattice we have chosen
places the electric E and D fields at half-integer points
on the grid (i + 1/2, j + 1/2) and at integer time-steps
n. The converse is true for the magentic B and H fields.
For a schematic illustration, see Fig. 1.

There are a number of posssible boundary conditions
that one can enforce. Metallic boundary conditions re-
quire that E ·n̂‖ = 0 and B ·n̂⊥, which in two-dimensions
(due to the separability of the polarizations) can be en-
forced by letting Ez = 0 or Hz = 0 for either the TM
or TE polarizations, respectively. Another useful set of
boundary conditions are periodic boundaries: here, the
fields at any given boundary must wrap around the op-
posite (parallel) boundary. For example, enforcing peri-
odic boundary conditions in the x direction is equivalent
to enforcing that the field be given by E ∼ E(x, y)eikx,
where k ≡ 2π/Lx and Lx is the length of the compu-
tational cell in the x direction. Finally, one can enforce
perfectly-matched boundary conditions (PML), which al-
low waves to attenuate outside the computational cell:
this is equivalent to having vaccum at the termination
of the cell and can be achieved in practice by applying a
coordinate transformation to Maxwell’s equations [ref].
We shall not attempt this latter case here.

18.337 PARALLEL COMPUTING

x

y

nx

nx

ny

nx

FIG. 2: Schematic illustration of computational cell (nx×ny),
parallelized in one direction (x) and distributed over three
processors. The dashed/red/blue partitions of size (nx′ ×
ny)/(nx′×ny)/(nx′′×ny) each belong to different processors.

C. Parallelizing the domain

When deciding how to parallelize any finite-difference
scheme, two very important questions arise: first, how
should one distribute the grid over the processors in or-
der to minimize the communication time arising from
boundary elements; second, how should one communi-
cate the data over the boundaries? The obvious goal is
to reduce the time and/or memory complexity, and this
will depend on the number of processors as well as the
dimensionality of the problem.

First consider the serial problem. The computational
problem is quite simple: each time step (iteration) re-
quires us to multiply a very sparse matrix (the discretized
evolution operator), which, upon inspection (see the dis-
cretized equations above), yields a time requirement that
is linearly proportional with the number of pixels in the
computational cell, i.e. of ∼ O(resd) complexity, for a
uniformly spaced grid of dimension d, such as the one
under consideration [1]. As a consequence, for relatively
large cells, or for three-dimensional problems, the com-
plexity of a single iteration grows quite rapidly, and the
numerics become prohibitive. Storage also plays an im-
portant factor in the parallelization of our equations. Be-
cause we must store six different complex fields (inlcuding
P and M), and because these are vector fields in three
dimensions, storage in general will go as ∼ O(36resd).
This problem is often a great concern and as we shall see
below, an important criteria for parallelization.

Now consider the parallel problem. As before, the time
complexity should be linearly proportional to the num-

nx

nx

ny

nx

ny

ny

x

y

FIG. 3: Schematic illustration of computational cell (nx×ny),
parallelized across the x and y directions, and distributed
over nine processors. The dashed/red/blue/green/brown par-
titions each belong to different processors.

ber of degrees of freedom N ∼ #pixels = resd. If we
distribute these over np processors, the complexity will
be reduced by a factor of np to yield an∼ O(resd/np) pro-
cess. If this were the full story, we’d have an embarras-
ingly parallel problem, but we do not. We have neglected
the communication time required due to boundary ele-
ments. In general, these will depend on the number of
pixels at the boundaries of each processor Nb, which will
grow (again neglecting constant factors that depend on
the partitioning or discretization scheme) as Nb ∼ resd−1.
Because each processor must acquire boundary informa-
tion, the overal communication complexity will be of or-
der O(resd−1×np). The total time complexity will there-
fore be given by the following expression:

op. counts ∼ α
resd

np
+ βresd−1np, (8)

where the first term is proportional to the volume of the
whole computational cell, and the second term is pro-
portional to the “area” of each processor’s designated
volume. From inspection, we observe that in order to op-
timize the operation count, one desires a parallel scheme
that minimizes the surface (communication time) to vol-
ume (iteration time) ratio. That is, if we are to gain
from the parallelization, we want to make sure that
β/res < α(np − 1)/np. For a fixed value of np and res-
olution, this translates into minimizing the value of β.
Note that the values of α and β will in general depend
on the desired differentiation scheme. For example, in a
center-difference discretization scheme, one requires the

18.337 PARALLEL COMPUTING

values of adjacent grid points. Therefore, α = 3 and β
will vary depending on how the cell is partitioned.

In one dimension, where our domain is basically a line
of pixels, Eq. 8 takes on a simple form. Consider a cell
of size N , and np processors. If we partition the cell
uniformly, then the number of pixels per processor will
be given by [|N/np|], where [| · · · |] denotes the “floor”
operator (the remaining grid points can be assigned ei-
ther to the master process or to a designated number of
slave processors). As noted before, for a center-difference
discretization, each boundary pixel will require an addi-
tional grid point, and therefore β = 1. The overall com-
plexity in this case will grow as (ignoring the additional
pixels in the master or last processor):

op. counts ∼ 3
[∣∣∣∣ N

np

∣∣∣∣] + np, (9)

For 1 < np � N , one can achieve some gains, but they
are small in most cases since N is often not very large.
For pratical purposes, this is a relatively unimportant
problem to parallelize.

As a first non-trivial example of how the distribution
scheme can affect the overall scaling, consider the re-
sulting complexities from uniformly partitioning a two
dimensional cell over either one (the largest) or two di-
rections. Figure 2 and Fig. 3 illustrate the two ideas.
Like before, the important quantity of interest is the sur-
face “communication” area to volume ratio. Consider
a computational cell of size nx × ny distributed over
np processors via the two different schemes mentioned
above. If we partition the data in only one dimension
(as depicted by Fig. 2), then the surface area will scale
as ∼ ny × np, whereas if we partition the data in two di-
mensions (as depicted by Fig. 3), the latter will scale as
∼ [2([|nx/

√
np|] + [|ny/

√
np|])× np ∼ 2(nx + ny)×√np.

The distributed volume will be roughly the same for both
cases, and will scale as ∼ nx × ny/np. In the end, there-
fore, the second parallelization scheme (over the two di-
rections) will minimize the communication time by a fac-
tor ∼ 4/

√
np, assuming nx = ny for simplicity—in gen-

eral, nx 6= ny will only change the constant factor and not
the scaling properties or the convergence of the schemes.
The one and two dimensional parallelization schemes will
therefore yield dramatically different results depending
on the number of processors and size of the problem in-
volved. For completeness, I quote the two scaling com-
plexities:

O1D ∼
(

n2

np
+ nnp

)
(10)

O2D ∼
(

n2

np
+ 4n

√
np

)
, (11)

where we assume that nx ≈ ny ≡ n and obviate constant
scaling factors.

10
1

10
2

10
3

10
4

10
-4

10
-2

10
0

10
2

10
4

N

tim
e

(s
)

serial

(N, N*p)

(N*p, N)

~1/N2

~1/N

10
1

10
2

10
3

10
4

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

N

tim
e

(s
)

serial

(N, N*p)

(N*p, N)

~1/N2

FIG. 4: Log-log plot of temporal complexity (time) in seconds
vs. size of matrix N for evaluation of Eq. 12 using both looped
(top) and vectorization (bottom) approaches. The implemen-
tations were performed in star-p using np = 4. Linear (pink)
and quadratic (green) scalings are also plotted as a reference
to the assymptotic dependence.

D. Approach to parallelization:
vectorization and hybridization

In considering how to parallelize Maxwell’s equations,
we must think carefully about which method is best
suited for the task, taking into consideration the type
of matrix operations required. A general analysis that
obviates some of the details of the problem, such as the
one performed in the previous section, would suggest that
we should partition the domain in two dimensions. How-
ever, as we demonstrate below, it is far more beneficial
to employ a different discretization procedure, one that
takes advantage of the form of Maxwell’s equations and
which can be easily implemented in star-p.

18.337 PARALLEL COMPUTING

To begin with, consider two matrices B ∈ N ×N , and
E ∈ N ×N , and the following equation for B:

Bi,j = Bi,j + α (Ei,j+1 − Ei,j) , (12)

where we note it’s resemblance with the discretized
Maxwell equations above (the second term is simply a
center-difference discretized derivative). When consid-
ering which type of parallelization approach to apply,
we must take into account that the only communication-
intensive operation is the difference equation on the right
hand side. Since it only involves differences in the y direc-
tion, we would be encouraged to parallelize over the x di-
rection (perpendicular to it). Another important decision
to make is whether or not one should use a data-parallel
or a task-parallel approach. The former emphasizes XXX,
while the latter emphasizes XXX. This problem is there-
fore a very likely candidate for a data-parallel method.
Two possible implementations of looped and vectorized
algorithms are given below:

B ∈N ×N ∗ p, E ∈ N ×N ∗ p

for k = 1 : (N − 1)
B(:, k) = B(:, k) + α (E(:, k + 1)− E(:, k))

end (13)

B ∈ N ×N ∗ p, E ∈ N ×N ∗ p

B(:, 2 : end) = B(:, 2 : end)
+ α (E(:, 2 : end)− E(:, 1 : end− 1)) (14)

where we can also parallelize over the x-direction, i.e.
B ∈ N ∗ p × N , and E ∈ N ∗ p × N . The two previous
observations (vectorization and parallelization over the
y direction is preferential) can be readily confirmed by
Fig. 4, in which we benchmarked both looped (top) and
vectorized (bottom) implementations of the algorithm
using np = 4 processors, along with the two possible
one-dimensional parallelizations (x and y). As shown,
the vectorized x-dimensional parallelization (perpendic-
ular to the direction of cost-operation) is optimal and
yields temporal gains for N ≥ 103. The log-log plots
demonstrate assymptotic N2 behaviors (shown also by
the green dashed line) for large N � np, as expected.
For small N , communication lags ∼ N are evident in
both the looped and the vectorized versions. All, if not
most of these features are expected from our previous
analyses.

Based on these benchmarks, we would be inclined to
parallelize Maxwell’s equations in one dimension, rather
than in two dimensions, as is standard in the litera-
ture [ref]. However, Maxwell’s equations do not involve
derivatives over only one direction, but they mix deriva-
tives in multiple directions. For example, while paral-
lelizing the electric field Ez over the direction perpen-
dicular to x would yield temporal gains for Eq. 3, they
would ultimately be swamped by the inefficiency (com-
munication) required of Eq. 4. Simply stated, the longest

10
1

10
2

10
3

10
4

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

N

tim
e

(s
)

serial

~1/N2

hybridized

FIG. 5: Log-log plot of temporal complexity (time) in sec-
onds vs. size of matrix N for evaluation of Eq. 12 using the
hybridization approach described in the text. The implemen-
tations were performed in star-p using np = 4. The dashed
green line is included as a reference to the asymptotic N2

dependence of the complexity.

timescale will always be the bottleneck. Similarly, since
Eq. 5 involves finite differences both in x and y, a simple
one-dimensional discretization would only decrease the
numerical efficiency, at least for the parameter range ex-
plored above N ∈ (103, 104), where communication seems
to be a great expense. At this point, we’d like to point
out that, a wide range of electromagnetic structures com-
prise this regime of interest N >= 103. A general rule
for designing parallel codes should, in my opinion, involve
achieving maximal temporal and memory improvements
(scaling) over the widest range of possible values of N .
For small N/np, this is often hindered by communication
expenses, and it is precisely this small N regime that I
shall seek to optimize (note that in doing so, we are also
optimizing the large N regime).

Another possible approach to parallelization is the two-
dimensional parallelization explored above (see Fig. 3).
Unfortunately, star-p does not allow for parallelization
over two directions, and we cannot benchmark this case.
However, from our previous results, we expect the longest
timescale (the communication bottleneck) to dominate
and yield suboptimal results.

1. Hybridization

We now turn to a more interesting, smarter approach
to parallelizing Maxwell’s equations. Using the previous
results as a guide, and by inspection of our discretized
Maxwell equations, we can already guess at a possible
improvement. In particular, consider the parallelization

18.337 PARALLEL COMPUTING

scheme below:

By ∈ N ×N ∗ p ∼ Ez,x ∈ N ×N ∗ p (15)
Bx ∈ N ∗ p×N ∼ Ez,y ∈ N ∗ p×N (16)
Hy ∈ N ∗ p×N ∼ By,Hx ∈ N ×N ∗ p ∼ Bx (17)
Dz ∈ N ∗ p×N ∼ Hy ∈ N ×N ∗ p

+ Hx ∈ N ∗ p×N (18)

Ez,y ∈ N ∗ p×N ∼ ε−1Dz, Ez,y = Ez,x (19)

where we create two auxiliary fields Ez,x ∈ N × N ∗ p
and Ez,y ∈ N ∗p×N , both of which are parallelized per-
pendicular to their direction of cost operation (in order
to minimize communication cost), along with the cor-
responding B field. By construction, therefore, Eq. 3
and Eq. 4 have minimal communication cost and should
therefore exhibit improvements, as in the example above.
This choise already constraints our parallelization for the
magnetic fields B, and the corresponding H fields. For-
tunately, Eq. 5 involves finite differences over Hx and Hy

in directions perpendicular to the parallelization choise
for the auxiliary and B fields, and should also exploit
the lack of communication between processors. Finally,
the only possible communication intensive part is the last
assignment operations D = εE, which can be argued to
be negligible compared to the latter four. Here, E refers
to the value of the auxiliary electric fields defined above,
both of which must be synchronized (equated) at the
end of each time step, since ultimately there is only one
E field, and not two.

Due to the mixing of parallel directions, I chose to re-
fer to this method as a hybridization approach to paral-
lelization. The resulting benchmarks as a function of N ,
for np = 4 (as before) are shown in Fig. 5, demonstrat-
ing a rather dramatic increase in parallel performance,
thus suggesting that the improvements due to lack of
communication in Eq. 3–Eq. 5 are substantial enough
to overcome any source of communication from the re-
maining equations. A particularly encoruaging result
is the order-of-magnitude improvement achieved in the
N ∼ 103 regime. Extrapolation to larger N suggests the
possibility even better > 10 improvements.

E. Pseudocode

In this subsection, I sketch a pseudocode representa-
tion of the algorithm used to simulate the numerics (re-
stricted to the case of TM polarization):

(1) Initialize the seven field types Ez,x, Ez,y, Bx, By,
Dz, Pz, Jz to zero. User must specify a reso-
lution (a), a cell size (N = nx × ny), dielectric
function ε(x), and current distribution Jz(x, t)—
available distribution types are gaussian and con-
tinuous wave (cw) sources. This is all performed
inside matlab.

0

20

40

60

80

0

20

40

60

80
−4

−3

−2

−1

0

1

2

3

4

x 10
−4

+

−

0

Εz

FIG. 6: Three-dimensional (top) and contour (bottom) plots
of the steady-state electric field resulting from a source Jz ∼
eiωt. The exact value of ω is not of consequence or important
for this manuscript.

(2) Time stepping involves iteration of the discretized
equations above over a time T ∼ t × a, where t
is the user-specified time over which to evolve the
equations. The update equations, in the right order
are given above.

(3) Return the fields at the specified time. If a fast-
fourier transform or a similar operation requiring
the field at various times is needed, an option exists
to sample the fields over various times.

The actual code will be included along with this
manuscript.

18.337 PARALLEL COMPUTING

III. RESULTS AND REMARKS

Below, we give a sample calculation of the type of field
visualization that can be achieved using our code. In
this example, an electric field source Jz ∼ eiωt is ex-
cited. The resulting fields are allowed to equilibrate until
a steady-state is reached. This steady-state field is plot-
ted as a function of position in Fig. 6 as both 3d (top)
and projected contour (bottom) plots, showing the ex-
pected (based on symmetry) quadrupole field profile. For
these values of resolution ∼ 100 and supercell size (com-
putational size), the evolution matrices were no more
than N ∼ 200, resulting in ∼ O(103) degrees of free-
dom. Unfortunately, the parallelization gains for such a
small problem are quite insignificant, as predicted by our
benchmarks in the previous section. In fact, the parallel
version was approximately 10 times slower than the serial
version, which finished in roughly 10 seconds.

While the previous example was highly suboptimal
for parallelization, there are numerous cases of interest
whereby our parallelization scheme would be extremely
beneficial, e.g. in structures where N > 103. Such ge-
ometries are perhaps the most important and interest-
ing to study in electromagnetism. One such possibility is
that of a periodic crystal (with many lattice periods) sur-
rounded by a slab or uniform index structure, requiring a
substantially bigger supercell size L � d, where d is a lat-
tice period. In this case, even a small resolution res ∼ 30
can yield dramatically large computational cells, on the
order or greater than ∼ 106 in two dimensions, and even
greater in three dimensions, ∼ 109. Simple calculations
performed on a structure such as this one (for N ∼ 105)
showed the great power of parallelization, with orders
of magnitude improvements in both the time and mem-
ory complexities. In particular, for this relatively small
supercell N ∼ 105, the memory constraints made this
structure impossible to analyze in serial. The parallel

version was not only feasible to analyze, but also allowed
for quick results (on the order of hours). Such a geom-
etry in serial (ignoring memory constraints) would have
required days to analyze.

In conclusion, we have demonstrated an efficient way
to parallelize Maxwell’s equations using star-p, based on
a data-parallel approach. Most general parallel electro-
magnetic codes do not exploit the possibility of paral-
lelization in one dimension, and the use of auxiliary fields
for minimization of communication costs (the hybridiza-
tion method developed above). While such a method
poses other questions regarding it’s lack of generality and
efficiency in cases where, for example, ε is anisotropic,
or where, field quantities such as the total energy are
required at each time step, it is essentially quite robust
and efficient in the more standard cases of interest. Other
possible optimizations that make use of parallelism might
involve load balancing the processors for optimal perfor-
mance. In particular, one could perform a single itera-
tion test case in order to benchmark and identify areas
of highly intensive operation (bottle-necks), and use this
information in order to re-distribute the sizes and num-
ber of processors over the various regions. Such use of
non-uniform parallelization could be especially beneficial
in cases where Perfectly-Matched-Layer boundary con-
ditions are required, or when Maxwell’s equations are
discretized in a non-uniform fashion, such as in a finite-
element framework.

Acknowledgements

ARW is very grateful to Yee Lok, and Steven G. John-
son for their help and support during the last stages of
the project, and to Alan E. for his inspirational lectures
throughout the semester.

[1] The constant factor is not of interest to us in this analysis.

