
Oaz Nir
May 16, 2008
18.337J

Studying Morphological Variance of Single Cell Populations:
A Parallel Computing Framework

Introduction
I applied techniques of parallel computing, specifically Star-P, to set up a parallel
framework for doing a computation that is part of my thesis research. In this report, I first
give some background information on my research, so that the computation can be
understood in context. Next, I describe the computation itself and the data that is
used. Subsequently, I provide details of the serial and parallel approaches to
performing this computation, and provide results for each.

The overarching problem is to infer signaling relationships between proteins of interest.
One way to approach this problem is to knock out one gene at a time and perform
observations of the resulting cells. In most cases, the observations have been of
transcriptional levels averaged over a population of cells, obtained using microarrays.
This data is then used to infer signaling relationships.

Instead of using transcriptional data, we use morphological data. We acquire the data
using image processing software that we developed and then measure, for each single
cell, a slate of morphological traits. The goal then is to use this morphological data to
backwards-infer the signaling relationships. (In practice, good inference can only be
accomplished by using morphological data in conjunction with transcriptional data,
but here we concentrate on the morphological data.)

Data
We compiled quantitative measures of F = 150 morphological features for single cells in
N = 250 gene-knock-out treatment conditions (TCs) using the Drosophila BG-2 cell line.
Each TC had about C = 50 single cells, on average.

Computation
It is desirable to quantify the variability in the single cell populations that are obtained
from each gene knock-out experiment. For each knock-out, we are interested in
computing the linear correlations between each pair of morphological features taken
across the population of single cells. This is a problem that naturally lends itself to a
parallel formulation.

The linear correlation between points (xi, yi), i = 1,…,n, is given by:

For a given TC, suppose we have data stored in the form of a CxF matrix (called
“data”), where each row represents the morphological read-out for a single cell, and
each column represents a feature. Then we are interested in computing the linear
correlation between each pair of columns, i.e. a FxF matrix. The following function,
called my_corr, accomplishes this.

The dominant step comes in line 5, where multiplication of a FxC and a CxF matrix
occurs.

We can then run this in serial on random data, i.e. a three dimensional array,
rand(50,150,250), for each 2D slice – or we can run it in parallel using Star-P. The results
are as follows:

One point to note is that the serial computation is significantly slower if the return
variable, ret, is not pre-allocated. However, if it is pre-allocated, then the serial
computation and parallel computation take roughly the same amount of time
(perhaps the serial computation is slightly faster).

In practice, however, the data does not come in this nicely packaged form (i.e. a 3D
matrix) but rather it comes in a 2D form that must be processed into this packaged
form. In addition, not all TCs have the same number of single cells. For this reason, a
simple parallel algorithm is not quite so easy to implement. To get around this, we
encode the number of cells in each TC in the bottom-right corner of the data matrix in
the following altered function, mycorr_variable_size.

Furthermore, the data conversion from raw form to packaged form is accomplished by
the following function, input_data (details of the conversion from raw data to the
package form are not important for this discussion, but the function is included here for
the sake of completeness).

Now, we can write serial and parallel functions that start with the raw data (i.e. the
data as it is provided to us from the image processing software), package it, and then
perform the correlation computation. In the case of the parallel computation, we also
include ppback and ppfront commands to move the data to the server.

Characteristic timings for these two functions are shown in two examples below.

As before, note that the parallel computation time (.63 and .48 seconds in the two
examples) is slower than the serial computation time (.21 and .22 seconds,
respectively). Furthermore, the time to complete the ppback and ppfront commands is
significant (in practice, we could mitigate this effect by ftp-ing the data to the server).

Conclusions

Overall, we have implemented a parallel framework for computing a matrix of linear
correlations for all pairs of columns of morphological data, for multiple TCs. We would
have hoped that the parallel version would have resulted in faster run-times than the
serial version. As detailed above, however, this was not the case. (This effect was
exacerbated when the time required to move data to/from the server was included as
well).

Why weren’t speed-ups realized? The reason is probably that the size of the data sets is
too small for parallelization to achieve significant gains over serialization. In fact, speed-
ups are realized for very large data sets (e.g. C, F, N each ~1000) because the server
can handle larger data more smoothly than a typical PC. This is not necessarily due to
parallelization, but rather due to hard drive usage (it could also be due to
parallelization, but this cannot be immediately determined).

Overall, the project was a valuable excursion into the realm of parallelization. At the
current scale, the computational problem is not large to require parallelization, but as
we acquire data for larger populations of cells and for more TCs, or if we alter the
computational algorithm so that it becomes more complex, parallelization will be
useful. We now have the basic framework for this parallelization.

