18.337 Project: FFTW and the SiCortex Architecture

Po-Ru Loh

May 19, 2008

1 Introduction

The goals of this project were:
e to study parallel fast Fourier transform (FFT) algorithms in general;

e to understand the performance and limitations of the FFTW package currently provided on
SiCortex supercomputers; and

e to investigate novel ways of optimizing FFTs to exploit the peculiarities of SiCortex machines.

To provide a little background, the three current versions of FFTW (as of May 2008) are as
follows.

e FFTW 2.1.5 is the latest version of the package that supports distributed-memory parallel
transforms using MPI.

e FFTW 3.1.2 is the latest version for serial and multithreaded transforms. It is a complete
rewrite of the package, featuring a new API and an improved planner and codelet generator;
however, it does not support MPI transforms.

e FFTW 3.2alpha3 is the version of FFTW currently under development. Among other im-
provements, it provides MPI support and much faster parallel transpose algorithms; however,
it still has bugs and a release date is uncertain.

I have structured the bulk of this report to follow my work and findings more or less chrono-
logically. There are many possible directions for future study, some of which I hope to pursue: at
present, this project is still very much work in progress!

2 Experiments, Challenges, and Lessons

The starting point of my work was the following (excerpted) email from a SiCortex programmer
who had discovered unusual behavior in their FFTW builds:

Part of my work here at SiCortex is to work with the FFT libraries we provide to our
customers When I do a comparison of performance of the serial version of FFTW
2.1.5 and 3.2 alpha, FFTW 3.2 alpha is significantly slower.

Both codes are compiled with the same compiler flags. I am running the 64 bit version:

CC=scpathcc LD=scld AR=scar RANLIB=scranlib F77=scpathf95
CFLAGS="-g -03 -0PT:0fast -mips64" MPILIBS="-lscmpi"
./configure --build=x86_64-pc-linux-gnu
--host=mips64el-gentoo-linux-gnu --enable-fma

FFTW 3.2alpha

bench -opatient -s icf2048x2048

Problem: icf2048x2048, setup: 3.79 s, time: 4.21 s, "mflops":
109.7

FFTW 2.1.5

Please wait (and dream of faster computers).

SPEED TEST: 2048x2048, FFTW_FORWARD, in place, specific
time for one fft: 2.914490 s (694.868565 ns/point)
"mflops" = 5 (N log2 N) / (t in microseconds) = 158.303319

One thing I should point out is that FFTW 2.1.5 has been modified from its original
stock version. It has had some optimizations based on the work by Franchetti and
his paper “FFT Algorithms for Multiply-Add Architectures.” From my understanding
these optimizations have been folded into the genFFT code generator for FFTW 3.**

Am I correct in my assumption that FFTW 3.2 should be significantly faster?

While the above results were for serial FFTs (which were not really a focus of my project), fast
serial transforms might be an important tool to have in optimizing parallel transforms due to the
recursive nature of Cooley-Tukey algorithms. I therefore began by trying to replicate these results
on our own SC648 system. Seeing as the tests appeared to have been generated by a pre-existing
automated benchmarking routine, I searched for and found the the testing code in the FFTW
package.

Unfortunately, I also quickly discovered that the benchmarking code distributed with FFTW
was not an independent entity that could be compiled separately and then linked with an FFTW
build of choice. Instead, it had its own headers and dependencies embedded in the source tree
of the package, making the task of creating a binary difficult to extract from that of building the
entire package. This was a bit of a dilemma given that the whole idea was to test the precompiled
(and SiCortex-optimized) libraries provided with the machine. In the end I decided to compromise
and attempt to download the whole package, build it (with the default configuration options, since
I didn’t know anything smarter to use), and then hijack the last linking step to relink against the
"real” SiCortex version of FFTW.

2.1 Some surprises

My initial tests did not find a discrepancy nearly as big as those reported earlier (for a 2048x2048
complex transform):

‘ Version H Reported ‘ Found ‘
fftw-2.1.5 155 mflops | 140 mflops
fftw-3.1.2 120 mflops
fftw-3.2alphad || 110 mflops | 130 mflops

Of course, these results were simply using the downloaded version of the libraries without SiCor-
tex tweaks of any sort in code or compiler flags, and also with the gce compiler versus PathScale.

Strangely, I then tried re-linking fftw_test and bench using the precompiled fftw libraries that
came on the machine and got a substantial slowdown!

‘ Version H Reported ‘ Found ‘ With SC build ‘
fftw-2.1.5 155 mflops | 140 mflops 45 mflops
fftw-3.1.2 120 mflops
fftw-3.2alpha3 || 110 mflops | 130 mflops 90 mflops

One other thing I noticed was that the configure script for FFTW 3 complained about not
finding a hardware cycle counter; on the other hand, FFTW 2 didn’t produce this warning. Seeing
as I had compiled with default flags in both cases, I guessed that only FF'TW 3 used a cycle counter
and could thus be taking a performance hit. According to the SiCortex docs, however, the MIPS
processors in their machines did in fact have cycle counters, leaving me the questions of (a) how to
tell FFTW 3 of their existence; and (b) whether or not the SiCortex build of FFTW 3 was using
them.

2.2 More serial tests

While waiting for a response from SiCortex, I decided to run a few more tests to gauge the perfor-
mance of FFTW and understand the peak capabilities of our machine.

First, I was very curious to see how FFTW compared to a “standard” FFT implementation:
how substantial was the performance improvement obtained from its self-tuning? I quickly realized
that there was no such thing as a “standard” implementation, however: even though most codes
available on the web used some variant of Cooley-Tukey, there is an enormous spectrum of possi-
ble optimizations, and any given code performs some of these optimizations but foregoes others.
(This, apparently, was the observation that engendered the self-tuning of FFTW.) In the end, I
simply downloaded the kube-gustavson implementation off “Jorg’s useful and ugly FFT page”
that claimed to be quite fast yet simple: only a little over 500 lines of code in one source and one
header.

The following table shows test results from an initial compile, a compile using the optimization
flag -03, and a compile using optimizations and linking against the SiCortex optimized math library.

Transform size H Time: ‘ -03 time: ‘ -03 -Iscm time: ‘

1024x1024 rows
1024x1024 all

2.040359 sec
4.149302 sec

0.555099 sec
1.172668 sec

0.540417 sec
1.143589 sec

2048x2048 rows
2048x2048 all

8.482921 sec
17.633655 sec

2.321096 sec
5.325778 sec

2.260734 sec
5.208607 sec

4096x4096 rows
4096x4096 all

37.851723 sec
80.187843 sec

11.917786 sec
28.651167 sec

11.729611 sec
28.277497 sec

The extent of the speed increase from -03 surprised me, albeit perhaps simply because I was too
used to thinking in terms of algorithmic speedup versus compiler optimization. The discrepancy
between the amounts of time taken to transform the rows and columns is also noteworthy: for
small transforms, row time is roughly half the time taken for the entire 2D FF'T, but as the size of
the transform increases, and in particular once optimizations are used, the column time becomes
substantially greater than the row time. This is as expected given the noncontiguous memory
access required to transform columns, but it was still nice to have some hard numbers.

Dividing out by 5N log N, the “mflops” number for 2048x2048 comes to about 90, showing that
FFTW does indeed provide substantial speedup, but not beyond 2x in this case—again, a useful
ballpark figure to keep in mind.

As a side note, it also finally occurred to me at this time that performance on the order of 100-
200 “mflops” was incredibly slow! Indeed, looking at the benchmark graphs on the benchFFT page,
typical modern processors achieved figures in the 1000-10000 “mflop” range. What was happening
here?

A quick look at the SiCortex spec sheet provided the answer: 500 MHz MIPS processors simply
cannot compete with 2-3 GHz PC processors in a serial computation. This observation was obvious
in retrospect, but it underscored the fact that SiCortex machines were really built for parallel. Our
real interest in their system was seeing what it might allow us to do not one processor but 500 or
5000 processors.

2.3 Parallel tests

With this in mind, I moved on to testing the capabilities of our SC648 in parallel tasks. An initial
question I wanted to answer was what the machine had to offer in terms of relative speeds of
communication and computation. Mainly I wanted a clearer picture of where to look for parallel
FFT speedup. I ran some tests both on basic communication (and memory) operations and on
FEFTW, and a couple numbers I got were once again a little surprising.

e Point-to-point communication speed for MPI Isend/Irecv nears 2GB/sec as advertised for
message sizes in the MB range. Latency is such that a 32KB message achieves half the max.

e The above speeds seem to be mostly independent of the particular pair of processors which
are trying to talk, except that in a few cases—apparently when the processors belong to the
same 6-CPU node—top speed is only 1GB/sec. This seems quite counterintuitive and is the
exact opposite of what I expected!

Moreover, I had hoped to see some evidence of the Kautz network used in the interconnect
fabric: conceivably there might be room for optimization in the distribution and transfer of
data on this network. However, at least based on this test, no processors (aside from those
sharing the same node) appeared to be any farther apart than others.

e Upon introducing network traffic by asking 128 processors to simultaneously perform 64
pairwise communications, communication speed drops to around 0.5GB/sec with substantial
fluctuations.

e For comparison, the speed of memcpy on a single CPU is as follows:

Size (bytes) || Time (sec) | Rate (MB/sec)
256 0.000000 1152.369380
512 0.000000 1367.888343
1024 0.000001 1509.023977
2048 0.000001 1591.101956
4096 0.000003 1421.082913
8192 0.000006 1436.982715
16384 0.000010 1638.373220
32768 0.000097 337.867886
65536 0.000194 337.250067
131072 0.000413 317.622002
262144 0.001054 248.758781
524288 0.002281 229.862557
1048576 0.004371 239.917118
2097152 0.008626 243.109613

e The table above shows clear fall-offs when the L1 cache (32KB) and L2 cache (256KB) are
exceeded. What really surprised me, however, was that according to the previous experiments,
sending data to another processor is as fast as memcpy even in the best-case scenario (memcpy
staying within L1), and is many times faster once the array being copied no longer fits in
cache! This seems very strange: don’t the MPI operations also have to leave cache? How can
point-to-point copy be so much faster?

2.4 Some answers from a trip to Maynard

A visit to the SiCortex office answered several of the questions raised above. First, part of the
mystery behind the slowness of FFTW 3 was revealed: apparently at least one of the builds being
tested had been compiled with the -—enable-long-double flag set, resulting in a huge performance
hit. (The long double data type is 10 bytes and could cause problems with efficient memory
alignment, aside from being slower to compute with.) After this issue was fixed, performance still
lagged FFTW 2 by a factor of nearly 2, however. The missing cycle counter was certainly in part
responsible—in fact, without it, FFTW 3 does no timing whatsoever but instead tunes based on a
heuristic—but from previous tests I expected the impact to be more on the order of 10-20%, not
2x. Still, it made sense to fix this problem before doing too much more speculation.

A few more of the oddities had I discovered were also explained. The strange relative slowness
of on-node communication was apparently due to the fact that whereas the Kautz network connects
any two distinct nodes via three disjoint paths, data traveling between processors on a single node
can only follow one path. (This is probably an oversimplification and probably not an accurate
one due to my own superficial understanding, but in any case, the behavior was known and not an
anomaly of my testing code.) Additionally, memcpy was also known to be slower than one would
hope: from what I gathered—with the same caveat as above—the MIPS processors only have one
address register and do not prefetch, so transfer from one memory location to another takes a hit.

2.5 Follow-up questions and answers

Returning finally to algorithms, one question we all had was which decompositions the FFTW
planner typically chooses. Going home and snooping around a bit in the code, I found out that
turning on the ”verbose” option (fftw_test -v for 2.x and bench -v5, say, for 3.x) outputs the
plan. Based on a handful of test runs on power-of-2 transforms, FF'TW 2.1.5 seems to prefer:

e radix 16 and radix 8, for transform lengths up to about 21%;
e primarily radix 4 but finishing off with three radix 16 steps, for larger transforms.

There are also occasional radix 2 and 32 steps but these seem to be rare.

In practice, FFTW 2 for 1D power-of-2 transforms seems to just try the various possible radices
up to 64—nothing fancier than that. On the other hand, FF'TW 3 tries a lot more things, including
a radix-y/n first step. Finding out what FFTW 3 prefers will have to wait until we have a cycle
counter, however: at the moment, the planner information is meaningless.

Running a few more tests on smaller transforms, I also realized that the SiCortex-optimized
build for FFTW 2.1.5 was really doing quite well. Although initially we weren’t totally satisfied
with the numbers we were getting, the transform we were running was fairly large, and in fact
on optimal sizes (around 1024), peak performance is over 500 “mflops.” Basically, there’s a falloff
in performance as soon as the L1 cache is exceeded and another one once we start reaching into
main memory. All of the graphs on the benchFFT page show these falloffs; indeed, getting a peak
“mflops” number slightly better than the clock rate is about the best anyone can do (on non-SIMD
processors).

Summarizing, I concluded that FFTW 2 is pretty well-optimized (although the library currently
distributed with SiCortex machines is not!) and our focus should really be on FFTW 3. Serial
performance of FFTW 2 is good, and as for parallel transforms, the algorithms that FFTW 2 uses
are slow and not worth optimizing further. On the other hand, FFTW 3.2alpha already implements
several improvements—the first three or four possibilities that came to mind for me were all already
there—and despite being in alpha, it’s in good enough shape to start playing with once we have a
cycle counter.

2.6 A few more words on parallel transforms in FFTW

It is worth pointing out the similarities and differences between the approaches used by FFTW
2 and FFTW 3.2alpha for parallel transforms. Both employ the basic algorithm that alternates
between 1D FFT steps and transpose steps (three for 1D transforms and two for 2D transforms,
with possible savings if the input or output is allowed to be scrambled). However, on 1D transforms,
FFTW 2 chooses the initial radix as close to \/n as possible (i.e., viewing the data as a square),
whereas FF'TW 3.2alpha tries to choose the radix equal to the number of processors if possible.

FFTW 3.2alpha also considers the possibility of skipping local transposes, instead giving the
planner the option of deciding whether or not to perform them (to improve memory locality at the
cost of the time spent transposing). Additionally, the possibility of doing transposes in stages to
reduce the number of pairs of processors that must communicate (at the cost of increased total
data movement) is being explored.

2.7 Next Steps

As of a few days ago, I now have a cycle.h file to play with thanks to Jud Leonard at SiCortex.
Hopefully the new data this provides us from the FFTW 3 planner will give a better indication of
which ideas for faster parallel transforms are most promising. I hope to implement and test some
possible improvements over the summer.

